Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T14:11:04.286Z Has data issue: false hasContentIssue false

Grain Boundary Softening in Boron-Doped Ni3Al

Published online by Cambridge University Press:  26 February 2011

X. R. Qian
Affiliation:
Lehigh University, Department of Materials Science and Engineering, Bethlehem, PA 18015, U.S.A.
Y. T. Chou
Affiliation:
Lehigh University, Department of Materials Science and Engineering, Bethlehem, PA 18015, U.S.A.
Get access

Abstract

The effect of 0.2 at.% boron on grain boundary hardness in Ni3Al containing 24 to 26 at.% Al was studied. Normal grain boundary hardening was observed in all alloys with and without boron. However, the addition of boron decreases the magnitude of the grain boundary hardness, and the degree of “softening” depends on alloy stoichiometry. The occurrence of boron-induced softening is likely due to the increase in mobility of grain boundary dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grala, E. M., in “Mechanical Properties of Intermetallic Compounds” edited by Westbrook, J. H., (Wiley, New York) 1960, pp. 358.Google Scholar
2. Aoki, K. and Izumi, O., Trans. Jpn. Inst. Met. 19, 203 (1978).CrossRefGoogle Scholar
3. Aoki, K. and Izumi, O., Nippon Kinzaku Gakkaishi, 43, 1190 (1973).Google Scholar
4. Liu, C. T. and Koch, C. C., in “Technical Aspects of Critical Materials Used by the Steel Industry,” Vol. IIB, NBSIR 83-2679-9 (National bureau of Standards, Washington, DC), 1983.Google Scholar
5. Liu, C. T., White, C. L. and Horton, J. A., Acta Metall., 33, 213 (1985).Google Scholar
6. Takasugi, T., Izumi, O. and Masahashi, N., Acta Metall., 33, 1259 (1985).CrossRefGoogle Scholar
7. White, C. L., Padgett, R. A., Liu, C. T. and Yalisove, S. M., Scripta Metall., 18, 1417 (1984).CrossRefGoogle Scholar
8. Horton, J. A. and Miller, M. K., J. Phys. C2, 209 (1986).Google Scholar
9. Brenner, S. S., Sieloff, D. and Burke, M. G., J. Phys. C2, 215 (1986).Google Scholar
10. Horton, J. A. and Miller, M. K., Acta Metall., 35, 133 (1987).CrossRefGoogle Scholar
11. Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J. and Horton, J. A., Acta Metall., 34, 1395 (1986).CrossRefGoogle Scholar
12. Baker, I., Schulson, E. M. and Horton, J. A., Acta Metall., 35, 1533 (1987).CrossRefGoogle Scholar
13. Qian, X. R. and Chou, Y. T., Mater. Lett., in press (1988).Google Scholar
14. Qian, X. R. and Chou, Y. T., Scripta Metall, in press (1988).Google Scholar
15. Taub, A. I., Huang, S. C. and Chang, K. M., in “Failure Mechanisms in High Performance Materials” Proceedings of the 39th Meeting of the Mechanical Failure Prevention Group, edited by Early, J. G., Shivers, T. R. and Smith, J. H. (University of Cambridge Press, New York) 1985, pp. 57.Google Scholar
16. Liu, C. T., White, C. L., Koch, C. C. and Lee, E. H., Proceedings of the Symposium on High Temperature Materials Chemistry-II, edited by Munir, Z. A. and Cubicciotti, D., (the Electrochemical Society Inc., Pennington, NJ) Vol. 83–7, 1983, pp. 32.Google Scholar
17. DasGupta, A., Smedskjaer, L. C., Legnini, D. G. and Siegel, R. W., Mater. Lett., 3, 457 (1985).Google Scholar