Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:51:03.406Z Has data issue: false hasContentIssue false

Grain Boundary Phenomena in ZnO Varistors

Published online by Cambridge University Press:  15 February 2011

Richard Einzinger*
Affiliation:
Siemens Research Laboratories, Otto-Hahn-Ring 6, D8000 Munich 83, West Germany
Get access

Abstract

The paper resumes essential grain boundary phenomena which were found experimentally by microcontact measurements on adjacent grains. The results suggest a ZnO homojunction model. Calculations of defect equilibria in the Schottky defect model show that homojunctions can be formed during the cooling period under the influence of an extrinsic donor species by a shift of the bulk defect equilibrium and intersecting diffusion profiles of oxygen- and zinc vacancies near the grain boundary.

Recent experiments indicate that heterogeneous Bi2O3-segregation layers with a dissolved zinc-antimony-oxide compound are transformed to ZnO epitaxial layers plus a fine grained pyrochlore phase of zinc-bismuth-antimony oxide during the cooling period. Thus epitaxial ZnO layers eliminate thin Bi2O3-films and form homogeneous connections of adjacent grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Einzinger, R., Ber.Deutsche KeramGes., No. 7,244(1975)Google Scholar
2. Einzinger, R., Appl.Surf.Scl., 1,329(1978)CrossRefGoogle Scholar
3. Einzinger, R., Appl.Surf.Sci., 3,390(1979)CrossRefGoogle Scholar
4. Einzinger, R., Adv.Ceramics, 1559(1981)Google Scholar
5. Sze, S.M., Phys.of Semiconductor Devices (John Wiley & Sons, New York 1969) pp.9096 Google Scholar
6. Matsuoka, M., Jap.J.Appl.Phys. 10,736(1971)CrossRefGoogle Scholar
7. Levinson, L.M. and Philipp, H.R., Appl.Phys.Letters 24,75(1974)CrossRefGoogle Scholar
8. Lou, LF., J.Appl.Phys., 50(1),555(1979)CrossRefGoogle Scholar
9. Schwing, U. and Hoffmann, B., J.Appl.Phys. 51(8),4558(1980)CrossRefGoogle Scholar
10. Morris, W.G., J.Vac.Sci.Technol., 13(4),926(1976)CrossRefGoogle Scholar
11. Levine, J.D., CRC Crit.Rev.Solid State Sci. 5,597(1975)CrossRefGoogle Scholar
12. Kasai, P.J., Phys.Rev. 130(3),989(1963)CrossRefGoogle Scholar
13. Hausmann, A., Z.Phys. 237,86(1970)CrossRefGoogle Scholar
14. Kröger, F.A., The Chemistry of Imperfect.Crystals (North-HollandPublishing Co., Amsterdam 1964) p.691 Google Scholar
15. Secco, E.A., Can.J.Chem., 39,1544(1961)CrossRefGoogle Scholar
16. Hoffman, J.W. and Lauder, I., Trans.Faraday Soc. 66,2346(1970)CrossRefGoogle Scholar
17. Schottky, W., Bunsen-Gesellschaft Tagung (1958)Google Scholar
18. Mahan, G.D., Levinson, L.M. and Philipp, H.R., Appl.Phys.Letters 33,830(1978)CrossRefGoogle Scholar
19. Inada, M., Jpn.J.Appl.Phys. 18,1439(1979)CrossRefGoogle Scholar
20. Baumgartner, I. and Einzinger, R., Proc.5th Round Table Conf.on Sintering Portoroz, Yugoslav. (1981) CrossRefGoogle Scholar
21. In a recent paper by Neumann, , Phys.Stat.Sol.(b), 105,605(1981)the controversy on the native defect donor in ZnO is continued.CrossRefGoogle Scholar
The ESR signal at g = 1.96 is reinterpreted in terms of conduction electrons rather than paramagnetic oxygen vacancies. The donors are assumed to be interstitial zinc ions Zni.Google Scholar
In principle the considerations of the present paper on defect equilibria and related doping effects can also be performed in the Frenkel defect model involving VZn − Zni - equilibria. The quantitative consequences still have to be evaluated.Google Scholar