Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T11:16:51.713Z Has data issue: false hasContentIssue false

Grain Boundary Modelling and Correlation with Critical Current Densities in High‐Tc Superconductors

Published online by Cambridge University Press:  28 February 2011

K. Jagannadham
Affiliation:
Department of Materials Science and Engineering North Carolina State University Raleigh, North Carolina 27695
J. Narayan
Affiliation:
Department of Materials Science and Engineering North Carolina State University Raleigh, North Carolina 27695
Get access

Abstract

Geometrical modelling of grain boundaries in 123‐YBaCuO and 2223‐TlBaCaCuO systems is carried out for several misorientat‐ions. The a‐b and the a‐c type coincidence boundaries are analyzed to determine the fraction of Cu‐O planes that are continuous and the excess charge present at the boundary voids. The interg‐rain critical current density is determined as a function of the misorientation and the width of the boundary. The tunneling of superconductor pairs through the regions of distortions, giving rise to depression of the order parameter at the boundaries,is used to determine the critical current density in the weak coupling limit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chaudhari, P., Manhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett., 60, 1653, (1988).Google Scholar
2 Narayan, J., J. Metals, 41, 18, (1988).Google Scholar
3 Singh, R. K., Biunno, N. and Narayan, J., J. Appl. Phys. 65, 2398, (1989).Google Scholar
4 Schneemeyer, L. F., Gyorgy, E. M., and Waszczak, J. V., Phys. Rev., B36, 8804, (1987).Google Scholar
5 Vandover, R. B., Schneemeyer, L. F., Gyorgy, E. M. and Waszczak, J. V., Appl. Phys. Lett., 52, 1910, (1988).Google Scholar
6 Larbalestier, D. C., Babcock, S. E., Cai, X., Daeumling, M., Hampshire, D. P., Kelly, T. F., Lavanier, L. A., Lee, P. J., and Seuntjens, J., Physica C, 153, 1580, (1988).Google Scholar
7 Kwak, J. F., Venturini, E. L., Baughman, R. J., Morosin, B., and Ginley, D. S., Cryogenics, 29, 291, (1989).Google Scholar
8 Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett., 52, 2074, (1988).Google Scholar
9 Lera, F., Rillo, C., Navarro, R., Bartolome, J., Abradors, X., Cryogenics, 29, 379, (1989).Google Scholar
10 Dimos, D., Chaudhari, P., Manhart, J., and Legoes, F. K., Phys. Rev. Lett., 61, 219, (1988).Google Scholar
11 Manhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C., and McGuire, T. R., Phys. Rev. Lett., 61, 2476, (1988).Google Scholar
12 Kupfer, H., Apfelstedt, I., Flukiger, R., Keller, C., Meier‐Hirmer, R., Runtsch, B., Turouski, A., Wiech, U. and Wolf, T., Cryogenics, 28, 650, (1988).Google Scholar
13 Kupfer, H., Apfelstedt, I., Flukiger, R., Keller, C., Meier‐Hirmer, R., Runtsch, B., Turouski, A., Wiech, U. and Wolf, T., Cryogenics, 29, 268, (1989).Google Scholar
14 Narayan, J., Singh, R. K., and Biunno, N., Reviews of Solid State Science, World Scientific Publications Co, New Jersey, U. S. A., (1988) .Google Scholar
15 Chisholm, M. F. and Smith, D. A., Phil. Mag., 59, 181, (1989).Google Scholar
16 Jagannadham, K. and Narayan, J., Phil. Mag., 59, 917, (1989).Google Scholar
17 Jagannadham, K. and Narayan, J., Phil. Mag., in pressGoogle Scholar
18 Marcinkowski, M. J., Sadnanda, K., and Tseng, W. F., Physica Stat. Solidi., 18, 361, (1973).Google Scholar
19 Balluffi, R. W., in Interfacial Segregation, Eds. Johnson, W. C. and Blakely, J. M., ASM, Metals Park, Ohio, (1977).Google Scholar
20 Rice, R. W., Materials Science Research, Eds. Kreigel, W. K. and Palmour, H. III, Plenum Press, New York, N. Y., V. 3, P. 387, (1966).Google Scholar
21 Bishop, A. R., Martin, R. L., Muller, K. A. and Tesanovic, Z., Z. Phys. Condensed Matter, 76B, 17, (1989).Google Scholar
22 Deutscher, G. and Muller, K. A, Phys. Rev. Lett., 52, 2074, (1988).Google Scholar
23 Deutscher, G., Physica, 153, 15, 1988; IBM J. Research and Development, 33, 197, (1989).Google Scholar
24 Jagannadham, K. and Marcinkowski, M. J., in “Unified Theory of Fracture,” Trans. Tech S.A, CH‐4711 Aedermannsdorf, Switzerland, (1983).Google Scholar
25 Hirth, J. P. and Lothe, J., Theory of Dislocations, McGraw Hill, New York, (1978) .Google Scholar
26 Ledbetter, H. M., Austin, M. W., Kim, S. A., and Lei, M., J. Mater. Res., 2, 786, (1987).Google Scholar
27 Idaka, H. and Murakami, T., Phase Transitions, 15, 241, (1989).Google Scholar
28 Kang, J. H., Gray, K. E. and Kampwirth, R. T., Appl. Phys. Lett., 52, 2080, (1988).Google Scholar