Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:27:21.406Z Has data issue: false hasContentIssue false

Grain boundary Diffusion of Ni through Pd2Si

Published online by Cambridge University Press:  22 February 2011

E. C. Zingu
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

Interdiffusion in the Si<100>/Pd2Si/Ni and Si<111>/Pd2Si/Ni thin film systems has been investigated using Rutherford backscattering spectrometry. Nickel is found to diffuse along the grain boundaries of polycrystalline Pd2Si upon which it accumulates at the Si<100>Pd2Si interface. The high mobility of Ni compared to that of si suggests that Pd diffuses faster than Si along the Pd2Si grain boundaries. An activation energy of 1.2 eV is determined for Ni grain boundary diffusion in Pd2Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, S. and Terry, L. E., J. Appl. Phys., 47, 301 (1976).Google Scholar
2. Finstad, T. G. and Nicolet, M.-A., J. Appl. Phys., 50, 303 (1979).CrossRefGoogle Scholar
3. Finstad, T. G., Thin Solid Films, 51, 411 (1978).Google Scholar
4. Baglin, J. E. E., d’Heurle, F. M., Hammer, W. N. and Petersson, S., Nucl. Instr. and Methods 168, 491 (1980).Google Scholar
5. Hansen, M., in Constitution of Binary Alloys, McGraw-Hill, New York, 1958.Google Scholar
6. Murarka, S. P., Silicides for VLSI Applications, Academic Press, New York, 1983.Google Scholar
7. Hutchins, G. A. and Shepela, A., Thin Solid Films, 18, 343 (1973).CrossRefGoogle Scholar
8. Hirvonen, J. K., Weisenberger, W. H., Westmoreland, J. E. and Meussner, R. A., Appl. Phys. Lett., 21 37 (1972).Google Scholar
9. Wuttig, M. and Birnbaum, H. K., Phys. Rev., 147 495 (1966).Google Scholar
10 Nelson, G. C. and Holloway, P. H., ASTM Special Publ. 596, Philadelphia (1976), p. 68.Google Scholar
11. Hwang, J. C. M., Pan, J. D. and Balluffi, R. W., J. Appl. Phys., 50, 1349 (1979).Google Scholar
12. Holloway, P. H., Amos, D. E. and Nelson, G. C., J. Appl. Phys., 47, 3769 (1976).Google Scholar
13. Hwang, J. C. M. and Balluffi, R. W., J. Appl. Phys., 50, 1339 (1979).Google Scholar
14. Tsaur, B.-Y., Silversmith, D. J., Mountain, R. W. and Anderson, C. H. Jr., Mat. Res. Soc. Symp. 10, 341 (1981).Google Scholar
15. Pretorius, R., Ramiller, C. L. and Nicolet, M.-A., Nucl. Instr. and Meth. 149, 629 (1978).CrossRefGoogle Scholar
16. Cheung, N., Lau, S. S., Nicolet, M.-A., Mayer, J. W. and Sheng, T. T., Elec. Chem. Soc. Sym. Vol. 80–2, 494 (1980).Google Scholar