Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:32:46.878Z Has data issue: false hasContentIssue false

Grain Boundary Diffusion and Solute Segregation in Polycrystals and Oriented Bicrystals

Published online by Cambridge University Press:  10 February 2011

Chr. Herzig
Affiliation:
Institut für Metallforschung, Westfälische Wilhelms- Universität Münster, Wilhelm Klemm-Str. 10, D-48149 Münster, Germany, [email protected]
T. Surholt
Affiliation:
Institut für Metallforschung, Westfälische Wilhelms- Universität Münster, Wilhelm Klemm-Str. 10, D-48149 Münster, Germany, [email protected]
Get access

Abstract

Measurements of solute GB diffusion in Cu and Ag polycrystals were carried out in Harrisons type-B and type-C kinetic regime using 75Se, 195Au, 63Ni radioisotopes. In the B-regime at high temperatures, the GB diffusion parameter sδDGB was determined (s being the GB segregation factor, δ the GB width and DGB the GB diffusion coefficient), while in the C-regime at low temperatures DGB values were measured directly. The investigations of these differently behaving solute–solvent systems on Cu and Ag basis yield information on solute GB diffusion and segregation in relation to solute–solvent atomic binding and solute–vacancy interaction in the bulk and in GBs. The GB diffusion of 64Cu and 195Au in a series of near ∑ = 5, Θ = 36.9° (310) [001] Cu tilt GBs and of 71Ge in a series of near ∑ = 7, Θ = 38.2° (123) [111] Al tilt GBs in dependence on the tilt angle Θ and on the temperature was studied. A characteristic minimum in the GB diffusion parameter and a maximum in the activation energy was observed at the ideal CSL GBs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gupta, D., Hu, C. K. and Lee, K. L., Def. Diff. Forum 143–147, p. 1397 (1997).Google Scholar
2. Glickmann, E. and Molotskii, M., Mat. Lett. 26, p. 65 (1996).Google Scholar
3. Mishin, Y., Phil. Mag. A72, p. 1589, (1995).Google Scholar
4. Ma, Q., Lui, C. L., Adams, J. B. and Balluffi, R. W., Acta Met. Mater. 41, p. 143, (1993).Google Scholar
5. Nomura, M. and Adams, J. B., J. Mater. Res. 7, p. 3202, (1992).Google Scholar
6. Fisher, J. C., J. Appl. Phys. 22, p. 74, (1951).Google Scholar
7. Harrison, L. G., Trans. Farad. Soc. 57, p. 1191, (1961).Google Scholar
8. Kaur, I., Mishin, Y. and Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion, Wiley & Sons, Chichester, 1995.Google Scholar
9. Gas, P., Poize, S. and Bernardini, J., J. Phys. Colloq. 51, p. C1, (1990).Google Scholar
10. Sommer, J. and Herzig, Chr., J. Appl. Phys. 72, p. 2758, (1992).Google Scholar
11. Herzig, Chr., Geise, J. and Mishin, Yu., Acta Met. Mater. 41, p. 1683, (1993).Google Scholar
12. Surholt, T., Mishin, Yu. and Herzig, Chr., Phys. Rev. B 50, p. 3577, (1994).Google Scholar
13. Surholt, T. and Herzig, Chr., Def. Diff. Forum 143–147, p. 1391, (1997).Google Scholar
14. Surholt, T., Minkwitz, C. and Herzig, Chr., Acta Mater. 46, p. 1849, (1998).Google Scholar
15. Atkinson, A. and Taylor, R. I., Phil. Mag. A43, p. 979, (1981).Google Scholar
16. Surholt, T. and Herzig, Chr., Acta Mater. 45, p. 3817, (1997).Google Scholar
17. Gas, P., Poize, S., Bernardini, J. and Cabane, F., Acta Metall. 37, p. 17, (1989).Google Scholar
18. Hondros, E. D., in: Interphases, ed. Gifkins, R. C., Butterworths, London, 1969.Google Scholar
19. Bernardini, J., Cabane, F. and Cabane, J., Surf. Sci. 162, p. 519, (1985).Google Scholar
20. Massalski, T. B., ed., Binary Alloy Phase Diagrams, Am. Soc. Metals, Metals Park, Ohio 1986.Google Scholar
21. Sommer, J., Herzig, Chr., Mayer, S. and Gust, W., Def. Diff. Forum 66–69, p. 843, (1989).Google Scholar
22. Ma, Q. and Balluffi, R. W., Acta Mater. 41, p. 133, (1993).Google Scholar
23. Ballufffi, R. W. and Brokman, A., Scripta Metall. 17, p. 1027, (1983).Google Scholar
24. Balluffi, R. W., in: Diffusion in Crystalline Solids, ed. by Murch, G. E. and Nowick, A. S., Academic Press, New York, 1984.Google Scholar
25. Aleshin, A. N., Bokshtein, B. S. and Shvindlerman, L. S., Sov. Phys. Solid. State 19, p. 2051, (1977).Google Scholar
26. Aleshin, A. N., Aristov, V. Y., Bokshtein, B. S. and Shvindlerman, L. S., Phys. Stat. Sol. (a) 359, p. 1256, (1978).Google Scholar
27. Herbeuval, I. and Biscondi, M., Canad. Met. Quart. 13, p. 171, (1974).Google Scholar
28. Ma, Q. and Balluffi, R. W., Mat. Res. Soc. Symp. 209, p. 33, (1991).Google Scholar
29. Budke, E., Herzig, Chr., Prokofjev, S. and Shvindlerman, L. S., Mater. Sci. Forum 207–209, p. 465, (1996).Google Scholar
30. Surholt, T., Molodov, D. A. and Herzig, Chr., Acta Metall., submitted for publication.Google Scholar
31. Seah, M. P., J. Phys. F. 10, p. 1043, (1980).Google Scholar
32. Straumal, B. B., Klinger, L. M. and Shvindlerman, L. S., Acta Metall. 32, p. 1355, (1984).Google Scholar
33. Schober, T. and Balluffi, R. W., Phil. Mag. 21, p. 109, (1970).Google Scholar
34. Vystavel, T., Paidar, V., Gemperle, A. and Gemperlova, J., Interface Science 5, p. 215, (1997).Google Scholar
35. Love, G. R. and Shewmon, P. G., Acta Metall. 11, p. 899, (1963).Google Scholar
36. Cannon, R. F. and Stark, J. P., J. Appl. Phys. 40, p. 4366, (1969).Google Scholar