Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:26:44.075Z Has data issue: false hasContentIssue false

Grain Boundary Characterization in Polysilicon by Light Beam Induced Current Topography and Image Processing

Published online by Cambridge University Press:  22 February 2011

K. Masri
Affiliation:
Laboratoire de Physique de la Matière (U.A.- CNRS N° 358), INSA de Lyon; 20, Av. A. Einstein, 69621 Villeurbanne Cedex
J. P. Boyeaux
Affiliation:
Laboratoire de Physique de la Matière (U.A.- CNRS N° 358), INSA de Lyon; 20, Av. A. Einstein, 69621 Villeurbanne Cedex
S. N. Kumar
Affiliation:
Laboratoire de Physique de la Matière (U.A.- CNRS N° 358), INSA de Lyon; 20, Av. A. Einstein, 69621 Villeurbanne Cedex
L. Mayet
Affiliation:
Laboratoire de Physique de la Matière (U.A.- CNRS N° 358), INSA de Lyon; 20, Av. A. Einstein, 69621 Villeurbanne Cedex
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière (U.A.- CNRS N° 358), INSA de Lyon; 20, Av. A. Einstein, 69621 Villeurbanne Cedex
Get access

Abstract

A high performance light-beam-induced-current (LBIC) analyser has been used to determine the recombination velocity at the grain boundary (S) and the minority-carrier diffusion length (L). For this purpose a Schottky diode (Cr/Si) was fabricated using a p-type silicon bicrystal (1Ω cm, Σ13 grain boundary). The contacts were obtained by a “cold” technology. The diffusion length, determined by the method proposed by Ioannou, was subsequently fitted into the model proposed by Marek to evaluate the recombination velocity by the curve-fitting of the experimental and theoretical photocurrent profiles. A value of S = 2.104 cm/s was thus obtained. The influence of the thin oxide layer at the Cr/Si interface is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hanoka, J.I., Solar Cells 1 123 (1979) and references therein.Google Scholar
2. Inoue, N., Goodnick, S.M., and Wilmsen, C.W., Solar Cells 1., 233 (1979).Google Scholar
3. Marek, J., J. Appl. Phys.55.,318 (1984).CrossRefGoogle Scholar
4. Ioannou, D.E., and Davidson, S.M., J. Phys. D: Appl. Phys. 12, 1339 (1979).Google Scholar
5. Dixon, A.E., Damaskinos, S., Oliver, B.A. and Adsett, R.T., J.Can.Ceram.Soc.53,21,(1984)Google Scholar
6. Davidson, S.M. and Dimitriadis, C.A., J. Microscopy 118, 275 (1980).Google Scholar
7. Boyeaux, J.P., Masri, K., Mayet, L., Stcherbanioff, L., and Laugier, A., Ann. Chim. Fr. 12, 395(1987).Google Scholar
8. Boyeaux, J.P., Laugier, A., and Ruckteschler, R., in Energy Beam-Solid Interactions and Trans. Thermal Processing, edited by Nguyen, V.T. and Cullis, A.G. (Editions de Physique, Paris, 1985), p. 291; J.P. Boyeaux, A. Laugier, B. Montegu, E. Courcelle P. Siffert, and G. Chemisky, in Energy Beam-Solid Interactions and Trans. Thermal Processing, , edited by V.T. Nguyen and A.G. Cullis (Editions de Physiqe, Paris, 1985), p. 285. J.P. Boyeaux, M. Gavand, K. Masri, L. Mayet, B. Montegu and A.Laugier,19th IEEE PhotovoltaYc Specialists Conference Proceedings, 804, (1987).Google Scholar
9. Fabre, E., Acta Electronica 20, 117 (1977).Google Scholar
10. Truong, V.K., Marchand, J.J., and Nodet, H., J. Phys. 43, C1165, (1982).Google Scholar
11. Lien, C.D., Ph.D. thesis, California Inst. of Technology, 1985; Y.S. Wang, H.J. Yu, C.C. Hsu, B.W. Lee and W.A. Anderson,Solar Energy Mater. 7, 291 (1982).Google Scholar
12. Lukes, F., Surface Science, 30, 91, (1972).Google Scholar
13. Kipperman, A.H.M. and Omar, M.H., Appl.Phys.Lett., 28, 620, (1976).Google Scholar
14. See for e.g., Singh, R., Green, M.A. and Rajkanan, K., Solar Cells,3,95 (1981).Google Scholar
15. Rajkanan, K. and Anderson, W.A., 14th IEEE Photovoltaic Specialists Conference Proceedings, 386, (1980).Google Scholar
16. Ng, K.K. and Card, H.C., IEEE Trans. Electron. Devices, ED–27 716 (1980)Google Scholar
17. Kumar, V., and Dahlke, W.E., Solid-St. Electron. 20, 143 (1977).Google Scholar
18. Fischetti, M.V., Weinberg, Z.A. and Calise, J.A., J. Appl. Phys. 57, 418 (1985).CrossRefGoogle Scholar
19. Ng, K.K. and Card, H.C., J. Appl. Phys., 51, 2153 (1980).Google Scholar
20. Card, H.C. and Rhoderick, E.H.,J.Phys.D:Appl.Phys.,4, 1589,(1971)Google Scholar