Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:33:54.890Z Has data issue: false hasContentIssue false

Glass Transition Singularities and Slow Relaxation

Published online by Cambridge University Press:  03 September 2012

T. Odagaki
Affiliation:
Kyushu University, Department of Physics, Fukuoka 812, Japan
J. Matsui
Affiliation:
Kanazawa University, Department of Physics, Kanazawa 920-11, Japan
Y. Hiwatari
Affiliation:
Kanazawa University, Department of Physics, Kanazawa 920-11, Japan
Get access

Abstract

Generalized susceptibility for the binary soft-sphere mixtures is computed for the frequency range including both the a and β peaks in a supercooled fluid phase with a superlong-time molecular dynamics simulation. It is shown that the a peak has a non-Debye type frequency dependence and the β peak is essentially of a Debye-type. The slow dynamics is analyzed on the basis of the trapping diffusion model which takes account of two types of diffusive dynamics. With the use of the coherent medium approximation, the frequency dependence of dynamical quantities are shown to agree with the observation. The primary relaxation time is shown to exponentially diverge at a certain temperature below the glass transition point, in line with the Vogel-Fulcher equation. A unified view for the Vogel-Fulcher temperature, the glass transition temperature and the kinetic transition temperature is give on the basis of the trapping diffusion model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gibson, G. E. and Giauque, W. F., J. Am. Chem. Soc. 40, 93 (1923).Google Scholar
[2] Vogel, H., Phys. Zeit. 22, 641 (1921); G. S. Fulcher, J. Am. Cer. Soc. 8, 339 (1925).Google Scholar
[3] Kauzmann, W., Chem. Rev. 43, 219 (1948).Google Scholar
[4] Johari, G. P. and Goldstein, M., J. Chem. Phys. 53, 2372 (1970); C. A. Angell, J. Phys. Chem. Solids 49, 863 (1988).Google Scholar
[5] Mezei, F., Knaak, W., and Farago, B., Phys. Rev. Lett. 58, 571 (1987); W. Knaak, F. Mezei, and B. Farago, Europhys. Lett. 7, 529 (1988).Google Scholar
[6] Tao, N. J., Li, G. and Cummins, H. Z., Phys. Rev. Lett. 66, 1334 (1991); G. Li, W. M. Du, X. K. Chen, H. Z. Cummins and N. J. Tao, Phys. Rev. A 45, 3867(1992).Google Scholar
[7] Li, G., Du, W. M., Sakai, A. and Cummins, H. Z., Phys. Rev. A 46, 3343 (1992).Google Scholar
[8] Sidebottom, D. L., Bergmann, R., Börjesson, L. and Torell, L. M., Phys. Rev. Lett. 68, 3587 (1992); 71, 2260 (1993).Google Scholar
[9] Megen, W. van and Underwood, S. M., Phys. Rev. E 47, 248 (1993).Google Scholar
[10] Colemero, J., Arbe, A. and Alegrie, A., Phys. Rev. Lett. 71, 2603 (1993);Google Scholar
[11] Miyagawa, H., Hiwatari, Y., Bernu, B., and Hansen, J. P., J. Chem. Phys. 88, 3879 (1988).Google Scholar
[12] Signorini, G. F., Barrat, J. L., and Klein, M. L., J. Chem. Phys. 92, 1294 (1990).Google Scholar
[13] Miyagawa, H. and Hiwatari, H., Phys. Rev. A 44, 8278 (1991).Google Scholar
[14] Wahnström, G., Phys. Rev. A 44, 3752 (1991).Google Scholar
[15] Kob, W. and Andersen, H. C., Phys. Rev. Lett. 73, 1376 (1994).Google Scholar
[16] Miyagawa, H., Hiwatari, Y. and Itoh, S., Prog. Theor. Phys. Suppl. 103, 47 (1991).Google Scholar
[17] Bernu, B., Hiwatari, Y. and Hansen, J. P., J. Phys. C 18, L371 (1985); B. Bernu, J. P. Hansen, Y. Hiwatari and G. Pastore, Phys. Rev. A 36, 4891 (1987); G. Pastore, B. Bernu, J. P. Hansen and Y. Hiwatari, Phys. Rev. A 38, 454 (1988).Google Scholar
[18] Matsui, J., Miyagawa, H., Muranaka, T., Uehara, K., Odagaki, T. and Hiwatari, Y., Mol. Sim. 12, 305 (1994); J. Matsui, T. Odagaki and Y. Hiwatari, Phys. Rev. Lett. 73, 2452 (1994).Google Scholar
[19] Odagaki, T., Matsui, J. and Hiwatari, Y., Phys. Rev. E 49, 3150 (1994).Google Scholar
[20] Odagaki, T. and Hiwatari, Y., J. Phys.: Cond. Matt. 3, 5191 (1991).Google Scholar
[21] Odagaki, T. and Hiwatari, Y., Phys. Rev. A41, 929 (1990); A43, 1103 (1991).Google Scholar
[22] Barrat, J. L. and Latz, A., J. Phys.: Cond. Matt. 2 4289 (1990).Google Scholar
[23] Odagaki, T., Matsui, J. and Hiwatari, Y., unpublished.Google Scholar
[24] Götze, W., in Liquids, Freezing and the Glass Transition, edited by Hansen, J. P. (North Holland, Amsterdam, 1991), 287; W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241(1992).Google Scholar
[25] Kambayashi, S. and Hiwatari, Y., J. Phys. Soc. Japan, 56, 2788 (1987).Google Scholar
[26] Cummins, H. Z., Du, W. M., Fuchs, M., Götze, W., Hildebrand, S., Latz, A., Li, G., and Tao, N. J., Phys. Rev. E 47, 4223 (1993); H. Z. Cummins, G. Li, W. M. Du and J. Hernandez, Physica A 204, 169 (1994).Google Scholar