Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T21:53:14.838Z Has data issue: false hasContentIssue false

Glass Transition in Sub-nanometer Confinement

Published online by Cambridge University Press:  10 February 2011

A. Huwe
Affiliation:
University of Leipzig, Department of Physics, D - 04103 Leipzig, Germany
F. Kremer
Affiliation:
University of Leipzig, Department of Physics, D - 04103 Leipzig, Germany
M. Arndt
Affiliation:
University of Leipzig, Department of Physics, D - 04103 Leipzig, Germany
P. Behrens
Affiliation:
University of Hannover, Institute of Inorganic Chemistry, D - 30167 Hannover, Germany
W. Schwieger
Affiliation:
University Erlangen-Nürnberg, D - 91058 Erlangen, Germany
G. Ihlein
Affiliation:
Max Planck Institute of Coal Research, D - 45470 Mülheim / Ruhr, Germany
Ö. Akdogan
Affiliation:
Max Planck Institute of Coal Research, D - 45470 Mülheim / Ruhr, Germany
F. Schüth
Affiliation:
Max Planck Institute of Coal Research, D - 45470 Mülheim / Ruhr, Germany
Get access

Abstract

Broadband dielectric spectroscopy (10−2 Hz - 109Hz) is employed to study the molecular dynamics of low-molecular-weight glassforming liquids being confined to nanopores. For the H-bond forming liquid propylene glycol being confined to (uncoated and silanized) nanopores (pore size: 2.5 nm, 5.0 nm and 7.5 nm) a molecular dynamics is observed which is comparable to that of the bulk liquid. Due to surface effects in uncoated nanopores the relaxation time distribution is broadened on the long term side and the mean relaxation rate is decreased by about half a decade. This effect can be counterbalanced by lubricating the inner surfaces of the pores resulting in a relaxation rate which is slightly faster compared to the bulk liquid. For the H-bonded liquid ethylene glycol (EG) embedded in zeolites of different pore size and topology one observes a sharp transition from a single-molecule dynamics to that of a liquid depending on the coordination number of the confined molecules. While EG in silicalite (showing a single molecule relaxation) has four neighboring molecules, EG in zeolite beta or AIPO4-5 has a coordination number of five and behaves like a bulk liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Angell, C. A., Science 267, 1924 (1995).Google Scholar
2. Frick, B. and Richter, D., Science 267, 1939 (1995).Google Scholar
3. Böhmer, R., Ngai, K. L., Angell, C. A. and Plazek, D. J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
4. Hansen, J. P., Theory of Simple Liquids (Academic Press, London, ed. 2, 1990).Google Scholar
5. Johari, G. P., in Relaxations in Complex Systems, edited by Ngai, K. L. and Wright, G. B., (Washington, 1984), pp. 17ff.Google Scholar
6. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).Google Scholar
7. Donth., E. Glasübergang (Akademie Verlag, Berlin, 1981).Google Scholar
8. Götze, W., in Liquids, Freezing and the Glass Transition, edited by Levesque, D., Hansen, J. P. and Zinn-Justin, J., (North-Holland, Amsterdam, 1991).Google Scholar
9. Williams, G. and Fournier, J., J. Chem. Phys. 184, 5690 (1996).Google Scholar
10. Ngai, K. L., in Disorder Effects on Relaxational Processes. edited by Richert, R. and Blumen, A., (Springer-Verlag, Berlin, 1993), pp. 89ff.Google Scholar
11. Sappelt, D. and Jäckle, J., J. Phys. A 26, 7325 (1993).Google Scholar
12. Fischer, E. W., Douth, E. and Steffen, W., Phys. Rev. Lett. 68, 2344 (1992).Google Scholar
13. Fischer, E. W., Physica A 201, 183 (1993).Google Scholar
14. Gorbatschow, W., Arndt, M., Stannarius, R. and Kremer, F., Europhys. Lett. 35, 719 (1996).Google Scholar
15. Arndt, M., Stannarius, R., Gorbatschow, W. and Kremer, F., Phys. Rev. E 54, 5377 (1996).Google Scholar
16. Arndt, M., Stannarius, R., Groothues, H., Hempel, E. and Kremer, F., Phys. Rev. Lett. 79, 2077 (1997).Google Scholar
17. Streck, C., Mel'nichenko, Yu. B. and Richert, R., Phys. Rev. B 53, 5341 (1996).Google Scholar
18. Barut, G., Pissis, P., Pelster, R. and Nimtz, G., Phys. Rev. Lett. 80, 3543 (1998).Google Scholar
19. Bibby, D. M. and Dale, M. P., Nature 317, 157 (1985).Google Scholar
20. Braunbarth, C. M., Behrens, P., Felsche, J. and van de Goor, G., Solid State Ionics 101–103, 1273 (1997).Google Scholar
21. Meier, W. M., Olson, D. H. and Baerlocher, C., Atlas of Zeolite Structure Types, (Elsevier, Amsterdam 1996).Google Scholar
22. Newsam, J. M., Treacy, M. M. J., Koetsier, W. T. and Gruyter, C. B. de, Proc. Roy. Soc. (London) 420, 375 (1988).Google Scholar
23. Kremer, F., Boese, D., Maier, G. and Fischer, E. W., Prog. Polym. Sci. 80, 129 (1989).Google Scholar
24. Havriliak, S. and Negami, S., J. Polym. Sci. Part C 14, 99 (1966).Google Scholar
25. Nozaki, R. and Mashimo, S., J. Chem. Phys. 7 87, 2271 (1987).Google Scholar
26. Schäfer, H., Sternin, E., Stannarius, R., Arndt, M.. and Kremer, F., Phys. Rev. Lett. 76, 2177 (1996).Google Scholar
27. Pelster, R., submitted to Phys. Rev. B.Google Scholar
28. Mayo, S. L., Olafson, B. D. and Goddard, W. A. III, J. Phys. Chem. 94, 8897 (1990).Google Scholar
29. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
30. Burchart, E., thesis, Technische Universiteit Delft (1992).Google Scholar
31. Vogel, H., Phys. Zeit. 22, 645 (1921),Google Scholar
32. Fulcher, G. S., J. Am. Chem. Soc. 8, 339 (1925),Google Scholar
33. Tammann, G. and Hesse, G., Anorg. Allgem. Chem. 156, 245 (1926).Google Scholar
34. Schönhals, A., Kremer, F., Hofmann, A., Fischer, E. W. and Schlosser, E., Phys. Rev. Lett. 70, 3459 (1993).Google Scholar
35. Jordan, B. P., Sheppard, R. J. and Szwarnowski, S., J. Phys. D 11, 695 (1978).Google Scholar
36. Cusack, N. E., The Physics of structurally disordered Matter (Adam Hilger, Bristol, 1987).Google Scholar