Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:44:47.544Z Has data issue: false hasContentIssue false

Giant Magnetoresistance in Sputtered NIFE/AG Multilayers

Published online by Cambridge University Press:  03 September 2012

B. Rodmacq
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensée, SP2M/MP, CEN Grenoble, Bp 85X, 38041 Grenoble Cedex, France
A. Mallon
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensée, SP2M/MP, CEN Grenoble, Bp 85X, 38041 Grenoble Cedex, France
Ph. Gerard
Affiliation:
CEA/Laboratoire d'Électronique et de Technologie de l'Instrumentation, MEL-SMEM, CEN Grenoble, Bp 85X, 38041 Grenoble Cedex, France
Get access

Abstract

The Magnetoresistive properties of sputtered Ni8.1Fe1.9/Ag Multilayers have been investigated as a function of both Ag and NiFe layer thicknesses and thermal treatments. For the virgin sample, the Magnetoresistance (MR) ratio at room temperature goes through a maximum of 17% for a Ag thickness of about 11 A. In addition, the R (H) curve is found to be perfectly linear and reversible. Contrary to the MR ratio, the saturation field is observed to decrease continuously as the Ag thickness increases, leading to an increasing slope of the R (H) curves. Upon annealing, we observe both an increase of the MR ratio and a decrease of the saturation field, leading to a three fold increase of the MR slope for annealing temperatures of 280°C. Such a behavior appears to be highly dependent on the layer thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binasch, G., Grunberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989)Google Scholar
2. Parkin, S.S.P., More, N. and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990)Google Scholar
3. Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988)Google Scholar
4. Mosca, D.H., Petroff, F., Fert, A., Schroeder, P.A., Pratt, W.P. Jr, and Loloee, R., J. Magn. Magn. Mater. 94, L1 (1991)Google Scholar
5. Parkin, S.S.P., Bhadra, R. and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991)Google Scholar
6. Parkin, S.S.P., Appl. Phys. Lett. 60, 512 (1992)Google Scholar
7. Rodmacq, B., George, B., Vaezzadeh, M. and Mangin, Ph., Phys. Rev. B 46, 1206 (1992)Google Scholar
8. Rodmacq, B., Palumbo, G. and Gérard, Ph., J. Magn. Magn. Mater. 118, L11 (1993)Google Scholar
9. Dos Santos, C.A., Rodmacq, B., Vaezzadeh, M. and George, B., Appl. Phys. Lett. 59, 126 (1991)Google Scholar
10. Rodmacq, B., Dumesnil, K., Mangin, Ph. and Hennion, M., to be publishedGoogle Scholar