Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T18:50:56.656Z Has data issue: false hasContentIssue false

Gettering by Overpressurized Bubbles Induced by High-Energy-He-Implantation In Silicon

Published online by Cambridge University Press:  01 February 2011

Gabrielle Regula
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
Rachid El Bouayadi
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
Bernard Pichaud
Affiliation:
Laboratoire TECSEN, Aix-Marseille III, Service 151, Marseille, F-13397
Sylvie Godey
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, Orléans cedex, F-45071
Romain Delamare
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, Orléans cedex, F-45071
Esidor Ntsoenzok
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, Orléans cedex, F-45071
Anton Van Veen
Affiliation:
IRI, Delft University of Technology, Mekelweg 15, JB Delft, NL-2629
Get access

Abstract

Silicon samples were implanted with He ions at 1.6 MeV using doses ranging from 1×1016 cm-2 to 1×1017cm-2 with different fluxes (0.4νA/cm2 - 2.0νA/cm2) and annealed at high (1000°C) and low temperatures (800°C). The implantation induced-defect structure and their distribution in the depth of the sample were studied by cross section electron microscopy (XTEM). An unexpected consequence of the flux on the defect population and density was found solely for 2×1016 cm-2, which is the upper threshold to get nano-bubbles at such large implantation depth. Nuclear Reaction Analysis (NRA) were performed to measure the ratio of He remaining in the bubbles as a function of time and temperature anneal. Some samples were gold or nickel diffused at temperatures ranging from 870°C to 1050°C prior to He implantation. The gettering efficiency of the implantation-induced defects was measured by secondary ion mass spectroscopy (SIMS), after a high temperature getter annealing. SIMS profiles exhibit a shape and a width closely related to the presence of the defects (observed by XTEM) which are very efficient sinks for all kinds of metal impurities. The bubbles were found to be more efficient traps than the dislocation loops.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Assoc., San Jose, CA) p110 (1994)Google Scholar
2. Petersen, G.A., Myers, S.M. and Follstaedt, D.M., Nucl. Instr. and Meth. in Phys. Res. B 127/128, 301 (1997)Google Scholar
3. Wong-leung, J., Ascheron, C.E., Petravic, M., Elliman, R.G. and Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995)Google Scholar
4. Rohr, P., Grob, J.J., Siffert, P., Nucl. Instr. and Meth. B 80/81 640 (1993)Google Scholar
5. Mohadjeri, B., Williams, J.S., and Wong-Leung, J., Appl. Phys. Lett. 66 (15) 10 April 1995 ou la publi d'Isa sur h et heGoogle Scholar
6. Raineri, V., Fallica, P. G., Percolla, G., Battaglia, A., Barbagallo, M., Campisano, S. U., J. Appl. Phys. 78 (1995) 3727 Google Scholar
7. Griffioen, C. C., Evans, J. H., Jong, P. C. de, Veen, A. Van, Nucl. Inst. Meth. B 27 (1987) 417 Google Scholar
8. Atalo, M., Puska, M. J., Nieminen, R. M., Phys. Rev. B. 46 12 806 (1992)Google Scholar
9. Allen, W. R., Mater. Res. Soc. Symp. Proc. 279 433 (1993)Google Scholar
10. Corni, F., Calzlari, G., Frabboni, S., Nobili, C., Ottaviani, G., Tonini, R., J. Appl. Phys. 85 1401. (1999)Google Scholar
11. Veen, A. Van, Schut, H., Hakvoort, R. A., Fedorov, A., and Westerduin, K. T., Mater. Res. Soc. Symp. Proc. 373, 499 (1995)Google Scholar
12. Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995)Google Scholar
13. Follstaedt, D.M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electron. Mater. 25, 157 (1996)Google Scholar
14. Godey, S., Sauvage, T., Ntsoenzok, E., Erramli, H., Beaufort, M. F., Barbot, J. F., Leroy, B., J. Appl. Phys. 87, 5 (2000)Google Scholar
15.P.Fichner, F.P., Kaschny, J.R., Yankov, R.A., Mücklich, A., Kreissig, U. and Skorupa, W., Appl. Phys. Lett. 70, 732 (1997)Google Scholar
16. Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996)Google Scholar
17. Mariani-Regula, G., Pichaud, B., Godey, S., Ntsoenzok, E., Perner, O. and bouayadi, R. El, Mat. Sci. and Engineer. B, 71, 203 (2000)Google Scholar
18. Bouayadi, R. El, Regula, G., Pichaud, B., Lancin, M., Dubois, C., Ntsoenzok, E., phys. stat. sol. (b) 222, 319 (2000)Google Scholar
19. Regula, G., Bouayadi, R. El, Pichaud, B. and Ntsoenzok, E., Solid State Phenomena Vols. 82-84 pp.355360 (2002)Google Scholar
20. Stolvijk, N.A., Bracht, H., ‘diffusion in silicon, germanium and their alloys’ ed., landot-Börnstein, New Series III/33A p 196.Google Scholar
21. Schröter, W., Seibt, M. and Gilles, D., Materials Science and Technology Eds. Cahn, R.W., Haasen, P. and Kramer, E.J., VHC Weinheim 1991 Vol. 4, (pp 539587)Google Scholar
22. Graff, K., Metal Impurities in Silicon-Device Fabrication, Springer Series in Materials Science, Eds. Queisser, H. J., Springer-Verlag Berlin Heidelberg (1995)Google Scholar
23. Hauber, J., Stolwijk, N.A., Tapfer, L., Mehrer, H. and Frank, W., J. Phys. C, 19, 5817 (1986)Google Scholar
24. Donnelly, S. E., Vishnyakov, V. M., Birtcher, R. C., Carter, G., Nucl. Instr. and Meth in Phys. B 175-177 (2001) 132139 Google Scholar