Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:56:27.692Z Has data issue: false hasContentIssue false

Ge-Related Interfacial Defects In SiGe Alloy Structures

Published online by Cambridge University Press:  15 February 2011

Patricia J. Macfarlane
Affiliation:
Dept of Physics, University of Alabama at Birmingham, Birmingham, AL 35294–1170, [email protected]
M. E. Zvanut
Affiliation:
Dept of Physics, University of Alabama at Birmingham, Birmingham, AL 35294–1170, [email protected]
W. E. Carlos
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
M. E. Twigg
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
P. E. Thompson
Affiliation:
Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

This paper reports etching results supporting the identification of the SG1 center as a germanium dangling bond defect at the interface between an oxide and crystalline SiGe. The presence of this defect is significant because, like an analogous center in Si-based systems, it may alter the operation of any microelectronic or micro-optical device which incorporates an interface between SiGe and an overlying oxide. The samples examined are oxygen implanted SiGe layers in which the SG 1 center is believed to occur at the interface between oxide precipitates and SiGe. Because of the center's apparent relation to the oxide precipitates distributed through layers of the sample, a depth profile assists in confirming the interfacial nature of the defect. We obtain a depth profile by comparing electron paramagnetic resonance (EPR) spectra of samples etched to decreasing thickness. EPR spectra indicate that the SG1 center decreases with depth in a manner that when correlated to a cross sectional transmission electron micrograph confirms the association with Si0 2 and supports its location at the SiGe/SiO2 precipitate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Konig, U., Microelec. Engr. 23, 3 (1994).Google Scholar
2. Harame, D.L., Comfort, J.H., Cressler, J.D., Crabbe, E.F., Sun, J.Y.-C., Meyerson, B.S., and Tice, T., IEEE Trans. Electron. Dev. 42, 455 (1995).Google Scholar
3. Eugene, J., LeGoues, F.K., Kesan, V.P., Iyer, S.S., and d'Heurle, F.M., Appl. Phys. Lett. 59, 78 (1991).Google Scholar
4. Liu, W.S., Bai, G., Nicolet, M-A., Chem, C.H., Arbet, V., and Wang, K.L., in Silicon Molecular Beam Epitaxy.edited by Bean, J.C., Iyer, S.S., Wang, K.L. (Mater. Res. Soc. Proc. 220, Pittsburg, PA 1991) pp. 259263.Google Scholar
5. Verdonckt-Vandebroek, S., Crabbe, F., Meyerson, B.S., Harame, D.L., Restle, P.J., Stork, J.M.C., and Johnson, J.B., IEEE Trans. Electron. Dev. 41, 90 (1994).Google Scholar
6. Mukhopadhyay, M., Ray, S.K., Maiti, C.K., Nayak, D.K., and Shiraki, Y., Appl. Phys. Lett. 65, 895 (1994).Google Scholar
7. Stathis, J.H. and Dori, L., Appl. Phys. Lett. 58, 1641 (1991).Google Scholar
8. Gerardi, G.J., Poindexter, E.H., and Caplan, P.J., Appl. Phys. Lett. 49, 348 (1986).Google Scholar
9. Poindexter, E.H., Gerardi, G.J., Rueckel, M.-E., Caplan, P.F., Johnson, N.M., and Biegelsen, D.K., J.Appl. Phys. 56, 2844 (1984).Google Scholar
10. Carlos, W.E., Appl. Phys. Lett. 50, 1450 (1987).Google Scholar
11. Zvanut, M.E., Carlos, W.E., Twigg, M.E., Stahlbush, R.E., and Godbey, D.J., J. Vac. Sci. Tech. B 310, 2026 (1992).Google Scholar
12. Twigg, M.E., Zvanut, M.E., Stahlbush, R.E., Godbey, D.J., and Jenkins, W.C., Appl. Phys. Lett. 61, 3142 (1992).Google Scholar
13. Tuppen, C.G., Tayor, M.R., Hemment, P.L.F., and Arrowsmith, R.P., Appl. Phys. Lett. 45 57 (1984).Google Scholar
14. B.-Y Mao, Chang, P.-H., Lam, H.W., Shen, B.W., and Keenan, J.A., Appl. Phys. Lett. 48, 794 (1986).Google Scholar
15. Kendall, D. L., Ann. Rev. Mater. Sci. 9, 373 (1979).Google Scholar