Published online by Cambridge University Press: 03 September 2012
In order to understand better the morphology and the asymptotic behavior in Diffusion Limited Aggregation (DLA), we studied a large numbers of very large off-lattice circular clusters. We inspected both dynamical and geometric asymptotic properties, namely the moments of the particle's sticking distances and the scaling behavior of the transverse growth crosscuts, i.e., the one dimensional cuts by circles. The emerging picture for radial DLA departs from simple self-similarity for any finite size. It corresponds qualitatively to the scenario of infinite drift starting from the familiar five armed shape for small sizes and proceeding to an increasingly tight multi-armed shape. We show quantitatively how the lacunarity of circular clusters becomes increasingly “compact” with size. Finally, we find agreement among transverse cuts dimensions for clusters grown in different geometries, suggesting that the question of universality is best addressed on the crosscut.