Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:32:12.069Z Has data issue: false hasContentIssue false

A Generalized Roosbroeck-Schockley Relation for III-Nitrides in Far-from-Equilibrium Conditions

Published online by Cambridge University Press:  17 March 2011

A. R. Vasconcellos
Affiliation:
Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil
R. Luzzi
Affiliation:
Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil
C. G. Rodríguez
Affiliation:
Departamento de Física, Universidade Católica de Goiás, 74605-010 Goiânia, Goiás, Brazil
V. N. Freire
Affiliation:
Departamento de Física, Universidade Federal do Ceará, Centro de Ciências, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
A. P. da Costa
Affiliation:
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Caixa Postal 1641, 59072-970 Natal, Rio Grande do Norte, Brazil
Get access

Abstract

We consider the behavior of the absorption coefficient and luminescence spectrum in the steady state when III-nitrides semiconductors (compounds GaN, AlN, and InN) are in far-fromequilibrium conditions created by an electric field. We analyze the high frequency part of the spectra obtaining a generalization of the Roosbroeck-Schockley relation, δRS(ω, EF), the ratio between the frequency dependent luminescence I(ω) and the absorption coefficient α(ω), for nonequilibrium conditions which are dependent on the electric field intensity EF. We show that the carrier's temperature within a small error is proportional to d ln[δRS(ω, EF)]/dω.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tamulaitis, G., Zukauska, A., Wang, J. W., Khan, M. A., Shur, M. S., and Gaska, R., Appl. Phys. Lett. 75, 2277 (1999).Google Scholar
2. Ye, H., Fauchet, M., Appl. Phys. Lett. 74, 711 (1999).Google Scholar
3. Zubarev, D. N., Morosov, V. and Röpke, Gerd, Statistical Mechanics of Nonequilibrium Processes, Vol. 1 and 2 (Akademie Verlag, Berlin,1996 and 1997 respectively).Google Scholar
4. Luzzi, R. and Vasconcellos, A. R., Forschr. Phys./Prog. Phys. 38, 887 (1990);Google Scholar
5. Madureira, J. R., Vasconcellos, A. R., Luzzi, R., and Lauck, L., Phys. Rev. E 57, 3637 (1998).Google Scholar
6. Rodrigues, C. G., PhD Thesis, Universidade Estadual de Campinas (Campinas, SP, Brazil, unpublished, 2001).Google Scholar
7. Rodrigues, C. G., Freire, V. N., Vasconcellos, A. R., and Luzzi, R., Appl. Phys. Lett. 76, 18931895 (2000)Google Scholar
8. Foutz, B. E., O'Leary, S. K., Shur, M. S., Eastman, L. F., J. Appl. Phys. 85, 77277734 (1999), and references therein.Google Scholar
9. Brandt, O., Wünsche, H.-J., Yang, H., Klann, R., Müllhäuser, J. R., and Ploog, K., J. Crystal Growth 189/190, 790793 (1998).Google Scholar