Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T08:57:59.681Z Has data issue: false hasContentIssue false

General Model of Diffusion of Interstitial Oxygen in Silicon and Germanium Crystals

Published online by Cambridge University Press:  01 February 2011

Vasilii Gusakov*
Affiliation:
Institute of Solid State and Semiconductor Physics, P. Brovka str. 17, Minsk, 220072, Belarus.
Get access

Abstract

A theoretical modeling of the oxygen diffusivity in silicon and germanium crystals both at normal and high hydrostatic pressure has been carried out using molecular mechanics, semiempirical and ab-initio methods. It was established that the diffusion process of an interstitial oxygen atom (Oi) is controlled by the optimum configuration of three silicon (germanium) atoms nearest to Oi. The calculated values of the activation energy δEa (Si) = 2.59 eV, δEa (Ge) = 2.05 eV and pre-exponential factor D0 (Si) = 0.28 cm2 s-1, D0 (Ge) = 0.39 cm2 s-1 are in a good agreement with experimental ones and for the first time describe perfectly an experimental temperature dependence of the Oi diffusion constant in Si crystals (T=350 - 1200°C). Hydrostatic pressure (P≤80kabar) results in a linear decrease of the diffusion barrier (∂PδEa(P)= -4.38 10-3 eV kbar-1 for Si crystals). The calculated pressure dependence of Oi diffusivity in silicon crystals agrees well with the pressure-enhanced initial growth of oxygenrelated thermal donors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mikkelsen, J. C. Matter. Res. Soc. Symp. Proc., 59, 19 (1986).Google Scholar
2 Saito, M. and Oshiyama, A., Phys. Rev. B 38, 10711 (1988).Google Scholar
3 and, A. Oshiyama Saito, M., in Defect Control in Semiconductors, ed. by Sumino, K. (Elsiver Science Publishers, North-Holland, 1990), p. 193.Google Scholar
4 Snyder, L. C. and Corbett, J. W., Mater. Res. Soc. Symp. Proc. 59, 207 (1986).Google Scholar
5 Snyder, L. C., Corbett, J. W., Deak, P., Mater, R. Wu. Res. Soc. Symp. Proc., 104, 179 (1988).Google Scholar
6 Kelly, P. J., Mater. Sci. Forum, 38-41, 269 (1989).Google Scholar
7 Jiang, Z. and Brown, R. A., Phys. Rev. Lett., 74, p2046 (1995).Google Scholar
8 Ramamoorthy, M. and Pantelides, S. T., Phys. Rev. Lett., 76, 267 (1996).Google Scholar
9 Hänggi, P., Talkner, P. and Borcovec, M., Rev. Mod. Phys., 62, 251(1990).Google Scholar
10 Levine, I. N., Quantum Chemistry, 5th ed. (Prentice Hall, NJ 07458, 1999) p. 739.Google Scholar
11 Newman, R.C. and Jones, B., in Oxygen in Silicon, Semiconductors and Semimetals, ed. by Shimura, F (Academic Press, London) 42, 209 (1994).Google Scholar
12 Newman, R. C., J. Phys.: Condens. Matter. 12, R335 (2000).Google Scholar
13 Pesola, M., Boehm, J. von, Mattila, T., et al, Phys. Rev. B 60, 11449 (1999).Google Scholar
14 Coutinho, J., Jones, R., Briddon, P. R., et al, Phys. Rev. B 62, 10824 (2000).Google Scholar
15 Corbett, J. W., McDonald, R. S. and Watkins, G. D., J. Phys. Chem. Solids 25, 873 (1964).Google Scholar
16 , Misiuk, Mater. Phys. Mech. 1, 119 (2000).Google Scholar
17 Emtsev, V. V., Andreev, B. A., Misiuk, A. et al. Appl. Phys. Lett. 71, 264 (1997).Google Scholar
18 Emtsev, V. V. Jr, Ammerlaan, C. A. J., Emtsev, V. V. et al. Phys. Stat. Sol. (b) 235, 75 (2003).Google Scholar
19 Antonova, V., Misiuk, A., Popov, V. P. et al. Physica B 225, 251 (1996).Google Scholar