Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:34:20.310Z Has data issue: false hasContentIssue false

Gate Leakage Suppression and Contact Engineering in Nitride Heterostructures

Published online by Cambridge University Press:  01 February 2011

Yuh-Renn Wu
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
Madhusudan Singh
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
Jasprit Singh
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
Get access

Extract

We present a self-consistent approach to examine current flow in a general metal-polar heterostructure junction. The approach is applied to examine properties of two classes of junctions that are important in devices: (i) GaN/AlGaN/high-κ insulator structures for potential applications in very small gate devices to suppress gate tunneling current; (ii) GaN/AlGaN/LiNbO3 junctions for both n-type and p-type semiconductors with practical application for low source resistance regions. The physical parameters used for high-κ dielectrics and polarization charges reflect values typically found in ferroelectric materials. Our studies indicate that tailoring of junction properties is possible if polar oxides as thin as ∼ 20Å can be achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Mishra, U. K., Wu, Y.-F., Keller, B. P., Keller, S., and Denbaars, S. P., IEEE Trans. Microwave Theory Tech. 46, 756 (1998).Google Scholar
[2] Dimitrov, R., Wittmer, L., Felsl, H., Mitchell, A., Ambacher, O., and Stutzmann, M., Phys. Status Solidi A 168, R7 (1998).Google Scholar
[3] Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
[4] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murohy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
[5] Maeda, N., Saitoh, T., Tsubaki, K., Nishida, T., and Kobayashi, N., Appl. Phys. Lett. 76, 3118 (2000).Google Scholar
[6] Singh, M., Singh, J., and Mishra, U., J. Appl. Phys. 91, 2989 (2002).Google Scholar
[7] Singh, M. and Singh, J., J. Appl. Phys. 94, 2498 (2003).Google Scholar
[8] Gummel, H. K., IEEE Trans. Electron Devices ED11, 455 (1964).Google Scholar
[9] Yang, K., East, J. R., and Haddad, G. I., Solid-State Electron. 36, 321 (1993).Google Scholar
[10] Zhang, Y. and Singh, J., J. Appl. Phys. 85, 587 (1999).Google Scholar
[11] Singh, M., Zhang, Y., Singh, J., and Mishra, U., Appl. Phys. Lett. 77, 1867 (2000).Google Scholar
[12] Wu, Y.-R., Singh, M., and Singh, J., J. Appl. Phys. 94, 5826 (2003).Google Scholar
[13] Droopad, R., Yu, Z., Ramdani, J., Hilt, L., Curless, J., Overgaard, C., J. L. E. , Jr, Finder, J., Eisenbeiser, K., Wang, J., Kaushik, V., Ngyuen, B.-Y., and Ooms, B., J. Cryst. Growth 227–228, 936 (2001).Google Scholar
[14] Kozodoy, P., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A., Perrin, R., Elhamri, S., and Mitchel, W. C., J. Appl. Phys. 87, 1832 (2000).Google Scholar
[15] Zhang, S. B., Wei, S.-H., and Zunger, A., Phys. Rev. Lett. 84, 1232 (2000).Google Scholar
[16] Walukiewicz, W., Physica B: Condensed Matter 302–303, 123 (2001).Google Scholar