Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T17:46:02.633Z Has data issue: false hasContentIssue false

Gas Pressure Sensor Based on PECVD Grown Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Richard Ficek
Affiliation:
[email protected], Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Udolni 53, Brno, 602 00, Czech Republic
Marek Elias
Affiliation:
[email protected], Masaryk University, Department of Physical Electronics, Kotlarska 2, Brno, N/A, Czech Republic, 00420 549493705, 00420 541211214
Lenka Zajickova
Affiliation:
[email protected], Masaryk University, Faculty of Science, Department of Physical Electronics, Kotlarska 2, Brno, 611 37, Czech Republic
Ondrej Jasek
Affiliation:
[email protected], Masaryk University, Faculty of Science, Department of Physical Electronics, Kotlarska 2, Brno, 611 37, Czech Republic
Radimir Vrba
Affiliation:
[email protected], Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Microelectronics, Udolni 53, Brno, 602 00, Czech Republic
Get access

Abstract

In present paper we describe development and manufacturing of the pressure sensor based on electron field emission from carbon nanotubes (CNTs). The sensor consisted of two parts, silicon membrane as an anode and multiwalled CNTs on a silicon cathode, creating a vacuum micro-chamber. Both electrodes were fabricated from the silicon single crystal (Si) wafer of the orientation (<100>) doped by phosphorus. The CNTs were grown by plasma enhanced CVD using iron catalyst in atmospheric pressure microwave torch. The catalyst was patterned into the area corresponding to the membrane dimensions. The thin CNTs with the diameter about 80 nm were straight standing perpendicularly to the substrate due to a crowding effect. In order to find the threshold current the emission characteristics of prepared sensors were measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cimalla, V., Niebelschutz, F., Tonisch, K., Foerster, Ch., Brueckner, K., Cimalla, I., Friedrich, T., Pezoldt, J., Stephan, R., Hein, M., Ambachera, O., Sens. Actuators B: Chem. (2006) doi:10.1016/j.snb.2006.10.049 (in press)Google Scholar
2. Kaabi, L., Kaabi, A., Sakly, J., Malek, F. Abdel Mat. Sci. and Engineering C (2006) doi: 10.1016/j.msec.2006.06.022 (in press)Google Scholar
3. Ettouhami, A., Zahid, N., Elbelkacemi, M., C. R. Mecanique 332, 141 (2004)Google Scholar
4. Zhou, M.-X., Huang, Q.-A., Qin, M., Sensors and Actuators A 117, 71 (2005)Google Scholar
5. Marque, M.I., Serena, P.A., Nicolaescu, D., Itoh, J., Appl. Surface Sci. 146, 239 (1999)Google Scholar
6. Anantram, M P and ́onard, F L Rep. Prog. Phys. 69 507 (2006)Google Scholar
7. Wong, Y.M., Kang, W.P., Davidson, J.L., Choi, B.K., Hofmeister, W., Huang, J.H., iamond Rel. Mater. 14 2078 (2005)Google Scholar
8. Qiana, K., Chenb, T., Yana, B., Lina, Y., Xua, D., Sunb, Z., Caia, B., Physica E 31, 1 (2006)Google Scholar
9. Yamamoto, A., Tsutsumoto, T. Diamond Relat. Mater. 11, 784 (2002)Google Scholar
10. Qian, K., Chen, T., Yan, B., Lin, Y., Xu, D., Sun, Z., Cai, B., Appl. Surface Sci. 252, 4198 (2006)Google Scholar
11. Holly, R., Hingerl, K., Microelectronic Engineering 83, 1430 (2006)Google Scholar
12. Zajíčková, L., Eliáš, M., Jašek, O., Kučerová, Z., Synek, P., Matějková, J., Kadlečíková, M., Klementová, M., Buršík, J., Vojáčková, A., Plasma Processes and Polymers 4, (2007) (in press) 12.1002/ppap.200730710Google Scholar
13. Zajíčková, L., Jašek, O., Eliáš, M., Bublan, M., Kudrle, V., Matějková, J., Buršík, J., Kadlečíková, M., Plasma Phys. Control. Fusion 47, B655 (2005)Google Scholar