Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:38:51.016Z Has data issue: false hasContentIssue false

GaN Room Temperature exciton Spectra by Photovoltaic Measurement

Published online by Cambridge University Press:  10 February 2011

W. Liu
Affiliation:
Center for optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260
M. F. Li
Affiliation:
Center for optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260
S. J. Chua
Affiliation:
Center for optoelectronics, Department of Electrical Engineering, National University of Singapore, Singapore 119260
Y. H. Zhang
Affiliation:
Institute of Microelectronics, National University of Singapore, Singapore 119260
K. Uchida
Affiliation:
Nippon Sanso. Co. Tsukuba, Lab, 10 Ohkubo Tsukuba, Ibaraki 300–26, Japan
Get access

Abstract

Exciton absorption peak has been clearly observed at room temperature by photovoltaic spectra, on a GaN layer grown on (0001)-plane Sapphire by metalorganic chemical vapor deposition. From the spectra, we obtained A and B exciton transition energies to be 3.401 eV, 3.408 eV, and the energy gap to be 3.426 eV in wurztite GaN, respectively. We have also performed photovoltaic measurements with various incidence angles of light, and observed the polarization behavior of exciton absorption in GaN. Finally, we used UV-polarizer to further confirm the polarization properties of GaN. In conjuction with previous room temperature photoreflectance measurements, this work provide direct and reliable assessment of the excitonic properties and crystal quality of GaN semiconductor layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237(1992)10.1116/1.585897Google Scholar
2. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Bums, M., J. Appl. Phys. 76, 1363(1994)10.1063/1.358463Google Scholar
3. Mohammad, S. N., Salvador, Arnel A., and Morkoc, H., Proceedings of The IEEE, 83, 1306(1995)10.1109/5.469300Google Scholar
4. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, L1331(1995)Google Scholar
5. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and ChochoJpn, K.. Proceedings of the second international conference on nitride semiconductors(ICNS'97), p444, October27–31,1997, Tokushima, Japan.Google Scholar
6. Reynolds, D. C., Look, D. C., Kim, W., Aktas, O., Botcharev, A., Salvador, A., Morkoc, H., and Talwar, D. N., J. Appl. Phys. 80, 594(1996)Google Scholar
7. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, , J.Appl.Phys. 79, 2784(1996)10.1063/1.361110Google Scholar
8. Korona, K. P., Wysmolek, A., Pakula, K., Stepniewski, R., Baranowski, J. M., Grzegory, I., Lucznik, B., Wroblewski, M., and Porowski, S., Appl. Phys. Lett. 69, 788(1996)10.1063/1.117892Google Scholar
9. Buyanova, I. A., bergman, J. P., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. lett. 69, 1255(1996)10.1063/1.117429Google Scholar
10. Chen, G. D., Smith, M., Lin, J. Y., Jiang, H. X., Wei, Su-Huai, AsifKhan, M., and, Sun, C. J., Appl. Phys. lett. 68, 2784(1996)10.1063/1.116606Google Scholar
11. Tchounkeu, M., Briot, O., Gil, B., Alexis, J. P., and Aulombard, R. L., J. Appl. Phys. 80,5352(1996)10.1063/1.363475Google Scholar
12. Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 985(1995)Google Scholar
13. Chow, W. W., Knox, A., and Koch, S. W., Appl. Phys. Lett. 67, 754(1995)10.1063/1.115215Google Scholar
14. Liu, W., Jiang, D. S., Zhang, Y. H., Jin, S., and Wang, R. Z., J. Appl. Phys. 77, 4564(1995)10.1063/1.359419Google Scholar
15. Xu, S. J., Jiang, D. S., Zhang, Y. H., Luo, C. P., and Luo, J. S., Chinese J. Infrared and Millimeter Waves, 12, 101(1994)Google Scholar
16. Karpovich, I. A., and Filatov, D. O., Semiconductors 30, 913(1996)Google Scholar
17. Zhang, X., Kung, P., Walker, D., Piotrowski, J., Rogalski, A., Saxier, A., and Razeghi, M., Appl. Phys. Lett. 67, 2028(1995)10.1063/1.114776Google Scholar
18. Hopfield, J. J., J. Phys. Chem. Solids. 15, 97(1960)Google Scholar
19. Merz, C., Kunzer, M., Kaufmann, U., Akasaki, I., and Amano, H., Semicond. Sci. Technol. 11,712(1996)10.1088/0268-1242/11/5/010Google Scholar
20. Dingle, R., Sell, D. D., Stokowski, S. E., Dean, P. J., and Zetterstrom, R. B. Phys. Rev. B3, 497(1971)10.1103/PhysRevB.3.497Google Scholar