Published online by Cambridge University Press: 15 March 2011
GaN dots have been grown on c-plane sapphire and (111) Si substrates by reactive molecular beam epitaxy. A new method involving two-dimensional growth followed by a controlled annealing during which dots are formed was employed. Due the dot nature and large dot density, relatively high luminescence efficiencies were obtained on both substrates. Single layer dots were used for AFM analysis whereas 30 layer dots were used for photoluminescence experiments. AlN barrier layers, some too thick for mechanical interaction, some thin enough for vertical coupling were used. Strong polarization effects lead to a sizeable red shift, which depends on the size of the dots.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.