Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:42:46.483Z Has data issue: false hasContentIssue false

Gamma Titanium Aluminide Alloys

Published online by Cambridge University Press:  22 February 2011

M. Yamaguchi
Affiliation:
Department of Materials Science and Engineering Kyoto University, Sakyo-ku, Kyoto 606, Japan
H. Inui
Affiliation:
Department of Materials Science and Engineering Kyoto University, Sakyo-ku, Kyoto 606, Japan
K. Kishida
Affiliation:
Department of Materials Science and Engineering Kyoto University, Sakyo-ku, Kyoto 606, Japan
M. Matsumoro
Affiliation:
Department of Materials Science and Engineering Kyoto University, Sakyo-ku, Kyoto 606, Japan
Y. Shirai
Affiliation:
Department of Materials Science and Engineering Kyoto University, Sakyo-ku, Kyoto 606, Japan
Get access

Abstract

Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, our understanding of their microstructural characteristics and property/microstructurc relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamaguchi, M. and Umakoshi, Y., Prog. Mater. Sci. 34, 1 (1991).Google Scholar
2. Barrett, C.S. and Massalski, T.B., Structure of Metals, 3rd revised ed. (Pergamon, Oxford, 1980), p.406.Google Scholar
3. Kim, Y-W., JOM, 41(7), 24 (1989).Google Scholar
4. Kim, Y-W. and Dimiduk, D. M., JOM, 43(8), 40 (1991).Google Scholar
5. Huang, S-C. and Shih, D.S., Microstructure/Property Relationships in Titanium Aluminides and Alloys, edited by Kim, Y.W. and Boyer, R.R. (TMS, Warrendale,PA, 1991), p.105.Google Scholar
6. Yamaguchi, M. and Inui, H., Structural Intermetallics. edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B. and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 127.Google Scholar
7. Kim, Y-W., 46(7), 30 (1994).Google Scholar
8. Fujiwara, T., Nakamura, A., Hosomi, M., Nishitani, S.R., Shirai, Y. and Yamaguchi, M., Phil. Mag. A, 61(4), 591 (1990).Google Scholar
9. Inui, H., Oh, M.H., Nakamura, A. and Yamaguchi, M., Acta mctall. mater., 40(11), 3095 (1992).Google Scholar
10. Yamaguchi, M. and Inui, H., Ordered Intermetallies-Physical Metallurgy and Mechanical Behavior (Proc.NATO Advanced Research Workshop), edited by Liu, C.T., Cahn, R.W. and Sauthoff, G. (Kluwcr Academic Publishers, Dordrecht, 1992), p.217.Google Scholar
11. Umakoshi, Y. and Nakano, T., Acta metall. mater., 41, 1155 (1993).Google Scholar
12. Umakoshi, Y., Nakano, T. and Yamane, T., Mater. Sci. Eng. A, 152, 81 (1992).Google Scholar
13. Beaven, P.A., Appel, F., Dogan, B. and Wagner, R., Ordered Intermetallics-Physical Metallurgy and Mechanical Behavior (Proc.NATO Advanced Research Workshop), edited by Liu, C.T., Cahn, R.W. and Sauthoff, G. (Kluwer Academic Publishers, Dordrecht, 1992), p.413.Google Scholar
14. Inui, H., Kishida, K., Misaki, M., Kobayashi, M. and Yamaguchi, M., submitted to Phil. Mag. A in December 1994.Google Scholar
15. Inui, H., Toda, Y. and Yamaguchi, M., Phil. Mag. A, 67, 1315 (1993).Google Scholar
16. Minonishi, Y., Phil. Mag. A, 63, 1085 (1991).Google Scholar
17. Umakoshi, Y., Nakano, T., Takenaka, T., Sumitomo, K. and Yamane, T., Acta metall. mater., 41, 1149 (1993).Google Scholar
18. Inui, H., Toda, Y. Shirai, Y. and Yamaguchi, M., Phil. Mag. A, 69, 1161 (1994).Google Scholar
19. Nabarro, F.R.N., Mater. Sci. Eng. A, 184, 167 (1994).Google Scholar
20. Kishida, K., Inui, H. and Yamaguchi, M., to be published.Google Scholar
21. Takeyama, M., Inteimetalic Compounds, edited by Izumi, O. (JIM, Sendai, Japan, 1991) p.507.Google Scholar
22. London, B., Larscn, D.E. Jr., Wheeler, D.A. and Aimone, P.R., in Ref. [6], p.151.Google Scholar
23. Yao, K.-F., Inui, H., Kishida, K. and Yamaguchi, M., Acta mctall. mater., in press.Google Scholar
24. Takeyama, M., Kumagai, T., Nakamura, M. and Kikuchi, M., in Ref. [6], p. 167.Google Scholar
25. Inui, H., Nakamura, A., Oh, M.H. and Yamaguchi, M., Phil. Mag. A, 66, 557 (1992).Google Scholar
26. Soboyejo, W.O., Schwartz, D.S. and Sastry, S.M.L., Metall.Trans., 23A, 2039 (1992).Google Scholar
27. Sriram, S., Vasudcvan, V.K. and Dimiduk, D.M., High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993), p.737.Google Scholar
28. Zin, Z. and Bieler, R., High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993), p.775; in Ref. [6], p.275.Google Scholar
29. Morris, M.A., Phil. Mag. A, 69, 129 (1994).Google Scholar
30. Kad, B.K., Hazzledine, P.M. and Fraser, H.L., High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993), p.495.Google Scholar
31. Es-Souni, M., Bartels, A. and Wagner, R., in Ref. [6], p.335.Google Scholar
32. Chan, K.S., JOM, 44(5), 30 (1992).Google Scholar
33. Chan, K.S. and Kim, Y-W., Metall. Trans., 23A, 1663 (1992).Google Scholar
34. Kim, Y-W. and Dimiduk, D. M., Intermetalic Compounds, edited by Izumi, O. (JIM, Sendai, Japan, 1991) p.373.Google Scholar
35. Rogers, N.J. and Bowen, P., in Ref. [6], p.231.Google Scholar
36. Li, Y.G. and Loretto, M.H., Acta metall. mater., 42, 2913 (1994).Google Scholar
37. Takagi, S. and Ouchi, C., J. Japan Inst. Metals, 58, 1001 (1994).Google Scholar
38. unpublished results (1994).Google Scholar
39. Rao, P.P. and Tangri, K., Mater. Sci. Eng. A, 132, 49 (1991).Google Scholar
40. Morris, D.G., Günter, S. and Leboeuf, M., Phil. Mag. A, 69, 527 (1994).Google Scholar
41. Kawabata, T., Kanai, T. and Izumi, O., Acta metall., 33(7), 1355 (1985).Google Scholar
42. Inui, H., Matsumuro, M. and Yamaguchi, M., to be published.Google Scholar
43. Austin, C.M. and Kelly, T.J., in Ref. [6], p.143.Google Scholar
44. Stucke, M.A., Dimiduk, D.M. and Hazzledine, P.M., High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J.D. and Yoo, M.H. (Mater. Res. Soc. Proc. 288, Pittsburgh, PA, 1993), p.471.Google Scholar
45. Mori, S. et al., Fusion Technology, 21, 1744 (1992).Google Scholar
46. Nishiyama, Y., Miyashita, T., Isobe, S. and Noda, T., High Temperature Aluminides and Intermetallics. edited by Wang, S.H., Liu, C.T., Pope, D.P. and Stiegler, J.O. (TMS, Warrendale, PA, 1990), p.557.Google Scholar
47. Morikawa, T., Abstracts of JIM Intermetallics Meeting - 25 Nov. 1994, (JIM, Sendai, Japan, 1994), p.37.Google Scholar
48. Yuki, I., Asano, N., Uozumi, M., Inui, H. and Yamaguchi, M., J. Japan Inst. Metals, 58, 564 (1994).Google Scholar
49. Appel, F. and Wagner, R., Defect - Interface Interactions, edited by Kvam, E.P., King, A. H., Mills, M.J., Sands, T.D. and Vitek, V. (Mater. Res. Soc. Proc. 319, Pittsburgh, PA, 1994), p.279.Google Scholar
50. Martin, P.L., Rhodes, C.G. and McQuay, P.A., in Ref. [6], p.177.Google Scholar
51. Fujitsuna, N., Miyamoto, Y. and Ashida, Y., in Ref. [6], p.187.Google Scholar
52. Clemens, H., Schretter, P., Wurzwallner, K., Bartcls, A. and Koeppe, C., in Ref. [6], p.205.Google Scholar
53. Clemens, H., Rumberg, I., Schretter, P. and Schwantes, S., Intermetallics, 2, 179 (1994).Google Scholar
54. Semiatin, S.L., Cornish, G.R. and Eylon, D., Mater. Sci. Eng. A, 185, 45 (1994)Google Scholar
55. Inui, H., Nakamura, A., Oh, M.H. and Yamaguchi, M., Ultramicroscopy, 39, 268 (1991).Google Scholar
56. Liu, Z.G., Frommeyerand, G. Kreuss, M., Phys. stat. sol (a), 131, 495 (1992).Google Scholar
57. Yang, Y.S. and Wu, S.K., Phil. Mag. A, 65(1), 15 (1992).Google Scholar
58. Singh, S.R. and Howe, J.M., Phil. Mag. A, 66(5), 739 (1992).Google Scholar
59. Kad, B.K. and Hazzledine, P.M., Phil. Mag. Lett., 66, 133 (1992).Google Scholar
60. Hazzledine, P.M., Kad, B.K., Fraser, H.L. and Dimiduk, D.M., Intermetallic Matrix Composites II, edited by Miracle, D., Graves, J. and Anton, D., (Mater. Res. Soc. Proc. 273, Pittsburgh, PA, 1992), p.81.Google Scholar
61.Yang, Y.S., Wu, S.K. and Wang, J.Y., Phil. Mag. A, 67(2), 463 (1993).Google Scholar
62. Appel, F., Beaven, P.A. and Wagner, R., Acta metall. mater. 41(6), 1721 (1993).Google Scholar
63. Pfullmann, Th. and Beaven, P.A., Scripta metall. mater., 28, 275 (1993).Google Scholar
64. Zhang, J.G., Liu, Z.G., Li, Q., Zhu, J.M., Feng, D. and Frommcyer, G., Phil. Mag. A, 70, 917 (1994).Google Scholar
65. Ricolleau, Ch., Dcnquin, A. and Naka, S., Phil. Mag. A, 69, 197 (1994).Google Scholar
66. Nazmy, M., Staubli, M. and Unverricht, M., Turbocharging and Turbochargers. (Mech. Eng. Pub., 1994), p.39.Google Scholar