Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:22:27.311Z Has data issue: false hasContentIssue false

GaAs/GaInP Quantum Well Intersubband Photodetectors for Focal Plane Array Infrared Imaging

Published online by Cambridge University Press:  10 February 2011

C. Jelen
Affiliation:
Center for Quantum Devices, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
S. Slivken
Affiliation:
Center for Quantum Devices, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
G. J. Brown
Affiliation:
Wright Laboratory, Materials Directorate, WL/MLPO, Wright-Patterson AFB, Ohio, 45433
M. Razeghi
Affiliation:
Center for Quantum Devices, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208.
Get access

Abstract

We demonstrate long wavelength quantum well infrared photodetectors (QWIP) with GaAs quantum wells and GalnP barriers grown using gas-source molecular beam epitaxy. Wafers were grown with varying well widths. The optimum well width was 75 Å, which resulted in a detection peak at 13 μm and a cutoff wavelength of 15 μm Dark current measurements of the samples with 15 μm cutoff wavelength show low dark current densities. Preliminary focal plane array imaging is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosen, R. and Johnston, G. in Proceedings of the 43rd Congress of the International Astronautical Federation. (IAF, 1992), p. 751.Google Scholar
2. Zussman, A., Levine, B., Kuo, J., de Jong, J., J. Appl. Phys. 70, 5101 (1991).Google Scholar
3. Olson, J., Ahrenkiel, R., Dunlavy, D., Keyes, B., and Kibbler, A., Appl. Phys. Lett. 55, 1208 (1989).Google Scholar
4. Mitchel, W., Brown, G., Lo, K., Elhamri, S., Ahoujja, M., Ravindran, K., Newrock, R., He, X., Razeghi, M., Appl. Phys. Lett. 65, 1578 (1994).Google Scholar
5. Razeghi, M., Defour, M., Ohmnes, F., Dobers, M., Vieren, J., Guldner, Y., Appl. Phys. Lett. 55, 457 (1989).Google Scholar
6. Razeghi, M., MOCVD Challenge V.2 (IOP Press, Bristol UK) 1995.Google Scholar
7. Gunapala, S., Levine, B., Ritter, D., Hamm, R., Panish, M., Appl. Phys. Lett. 57, 1802 (1990).Google Scholar
8. Hoff, J., Jelen, C., Slivken, S., Bigan, E., Brown, G., Razeghi, M., Superlatt. & Microstruct. 18, 249 (1995).Google Scholar
9. Hoff, J., Brown, G., Razeghi, M., Phys. Rev. B 54 11033 (1996).Google Scholar
10. Jelen, C., Slivken, S., Hoff, J., Brown, G., Razeghi, M., to be published in Appl. Phys. Lett. (Jan. 20, 1997).Google Scholar
11. Levine, B., J. Appl. Phys. 74, Rl (1993).Google Scholar