Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:29:20.902Z Has data issue: false hasContentIssue false

GaAs Surface Stabilization by Vacuum Anneal with SiO

Published online by Cambridge University Press:  22 February 2011

G. J. Gerardi
Affiliation:
William Paterson College of New Jersey, Wayne, N J 07470
F. C. Rong
Affiliation:
William Paterson College of New Jersey, Wayne, N J 07470
E. H. Poindexter
Affiliation:
William Paterson College of New Jersey, Wayne, N J 07470
M. Harmatz
Affiliation:
William Paterson College of New Jersey, Wayne, N J 07470
H. Shen
Affiliation:
U.S. Army ETDL, Fort Monmouth, N J 07703
W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, N M 87185
Get access

Abstract

We find a significant alteration of the surface properties of SI- GaAs as a result of a thermal treatment with SiO under vacuum. Low temperature photoluminescence measurements reveal a tenfold increase in emissions attributed to free or donor bound excitons and the exciton bound to a silicon acceptor. A paramagnetic center is also generated as a result of this treatment. The EPR signal has a g-value of 2.0017 and a linewidth of 0.1 mT. The enhanced photoluminescence and the EPR signal are both quenched by a short exposure to hydrogen plasma at room temperature. Chemical and spectroscopic evidence indicates that the resonance is due to a silicon related center near the GaAs surface. The surface stabilization is attributed to a reaction or incorporation of SiO with the arsenic depleted GaAs surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sandroff, R. C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
[2] Iyer, R. and Lile, D. L., Appl. Phys. Lett. 59, 437 (1991).Google Scholar
[3] Offsey, S. D., Woodall, J. M., Warren, A. C., Kirchner, P. D., Chappell, T. I., and Pettit, G. D., Appl. Phys. Lett. 48, 475 (1986).Google Scholar
[4] Kauffmann, J. F. and Richmond, G. L., Appl. Phys. Lett. 59, 561 (1991).Google Scholar
[5] Viktorovitch, P., Gendry, M., Krawczyk, S. K., Krafft, F., Abraham, P., Bekkaoui, A., and Monteil, Y., Appl. Phys. Lett. 58, 2387 (1991).Google Scholar
[6] Callegari, A., Hoh, P. D., Buchanan, D. A., and Lacey, D., Appl. Phys. Lett. 54, 332 (1989).Google Scholar
[7] Gottscho, R. A., Preppernau, B. L., Pearton, S. J., Emerson, A. B., and Giapis, K. P., J. Appl. Phys. 68, 440 (1990).Google Scholar
[8] Yoon, E., Gottsho, R. A., Donnelly, V. M., and Luftman, H. S., Appl. Phys. Lett. 60, 2681 (1992).Google Scholar
[9] Callegari, A., Sadana, D. K., Buchanen, D. A., Paccagnella, A., Marshall, E. D., Tischler, M.A., Norcott, M., Appl. Phys. Lett. 58, 2540 (1991).Google Scholar
[10] Hiramatsu, T., Goto, H., Hirobe, T., Hirofuji, Y., and Kimata, M., Jpn. J. Appl. Phys. 18, 853 (1979).Google Scholar
[11] Goltzene, A., Meyer, B., and Schwab, C., J. Appl. Phys. 53, 4541 (1982).Google Scholar
[12] Goltzene, A., Poiblaud, G., and Schwab, C., J. Appl. Phys. 50, 5425 (1979).Google Scholar
[13] Bottcher, R., Wartewig, S., Bindemann, R., Kuhn, G., and Fischer, P., phys. stat. sol. (b) 58, K23 (1973) K23.Google Scholar
[14] Pearton, S. J., Corbett, J. W., Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
[15] Cho, H. Y., Kim, E. K., Lee, H. S., and Min, S., J. Appl. Phys. 71, 1960 (1992).Google Scholar
[16] Reed, M. L., Plummer, J. D., J. Appl. Phys. 63, 5776 (1988).Google Scholar