Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:33:02.991Z Has data issue: false hasContentIssue false

GaAs / AlGaAs SQW Optical Switch on Si

Published online by Cambridge University Press:  25 February 2011

T. Yuasa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Y. Nagashima
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Egawa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
T. Jimbo
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
M. Umeno
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

We reported a waveguide-type optical switch fabricated on a Si substrate which utilized the Quantum Confined Stark Effect (QCSE). The prepared sample is an Al0.3Ga0.7As (cladding layer) / Al0.25Ga0.75As (guiding layer) double-heterostructure (DH) optical switch with a GaAs single quantum well (SQW) in the guiding layer by MOCVD. The absorption edge of the sample is measured by photocurrent method under reverse bias using a cw Ti: Sapphire laser for a light source. We measured about 10 nm shift of the absorption edge at -8 V from the sample with 8.3 nm SQW. This result demonstrates the Stark-shift effect of GaAs SQW on Si. A 2.5 μm-width ridge was formed by etching in the top cladding layer and the light traveling in the guiding layer was confined to a fundamental mode in vertical (parallel to growth direction) and horizontal direction. This switch showed 33.1 dB/mm modulation at 867 nm wavelength in -8 V bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, H. K., Wang, C. A., and Karam, N. H., Appl. Phys. Lett. 59, 2634 (1991).Google Scholar
2. Sugo, M., Mori, H., Sakai, Y., and Itoh, Y., Appl. Phys. Lett. 60, 472 (1992).Google Scholar
3. Yamagyuchi, M., and Kondo, S., Mater. Res. Soc. Symp. Proc. 145., 279 (1989).Google Scholar
4. Nonaka, T., Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L919 (1984).Google Scholar
5. Sakai, S., Chao, C. L., Wada, N., Yuasa, T., and Umeno, M., Appl. Phys. Lett. 66, 1480 (1992).Google Scholar
6. Umeno, M., Soga, T., and Jimbo, T., Jpn. J. Appl. Phys. 31, 1189 (1992).Google Scholar
7. Wood, T. H., Burrus, C. A., Miller, D. A. B., Chemla, D. S., Gossard, A. C., and Wiegmann, W., IEEE. J. Quantum Electron. OE-21, 117 (1985).Google Scholar
8. Tarucha, S., Inamura, H., Saku, T., and Okamoto, H., Jpn. J. Appl. Phys. 24, L442 (1985).Google Scholar
9. Tarucha, S., and Okamoto, H., Appl. Phys. Lett. 48 1 (1986).Google Scholar
10. Kuo, C. P., Vong, S. K., Cohen, R. M., and Stringfellow, G. B., J. Appl. Phys. 57, 5428 (1985).Google Scholar
11. Wood, T. H., Burry, C. A., Miller, D. A. B., Chemla, P. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Appl. Phys. Lett. 44, 16 (1984).Google Scholar
12. Miller, D. A. B., Chemla, P. S., Damen, T. C., Gossard, A. C., Wiegmann, W., Wood, T. H., Burry, C. A., Phys. Rev. Lett. 53, 2173 (1984).Google Scholar