Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T20:14:25.817Z Has data issue: false hasContentIssue false

Functional Polymers for Advanced Lithography

Published online by Cambridge University Press:  01 February 2011

Kyung Choi*
Affiliation:
[email protected], University of California, Chemistry, Irvine, California, 92697, United States
Get access

Abstract

In nanotechnology, many scientists have been seeking for new functional polymers, which can replica nano-sized features to achieve improved performances of nano-devices. Soft lithography has been widely used in replica of small features as a low cost alternative to conventional UV photolithography. However, commercial silicon rubbers, PDMS polymers, which have been used in current soft lithography, show limitations, especially for nano-resolution soft lithography. These limitations have motivated us to develop a new version of PDMS polymers to overcome those limitations and thus to extend current technology in soft lithography to the advanced level. Since the resolution of soft lithography significantly relies on stamping performance, we designed a novel PDMS prepolymer, which has photocurable cross-linkers to enhance mechanical property to improve lithographic performance and also to create photocurable capability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Duan, X., Niu, C. Sahi, V. Chen, J. Parce, J. W. Empedocles, S. and Goldman, J. L. Nature 425, 274 (2003).10.1038/nature01996Google Scholar
2 Radosavljevic, M. Appenzeller, J. Avouris, P. H. and Knoch, J. Appl. Phys. Lett. 84, 3693 (2004).10.1063/1.1737062Google Scholar
3 Balasubramanian, K. Sordan, R. Burghard, M. and Kern, K. Nano Lett. 4, 827 (2004).10.1021/nl049806dGoogle Scholar
4 Chan, E. M. Mathies, R. A. and Alivisatos, A. P. Nano Lett. 3, 199 (2003).10.1021/nl0259481Google Scholar
5 Shestopalov, I. Tice, J. D. and Ismagilov, R. F. Lab Chip 4, 316 (2004).10.1039/b403378gGoogle Scholar
6 Keren, K. Berman, R. S. Buchstab, E. Sivan, U. and Braun, E. Science 302, 5649 (2003).10.1126/science.1091022Google Scholar
7 Lefenfeld, M. Blanchet, G. and Rogers, J. A. Adv. Mater. 15, 1188 (2003).10.1002/adma.200304841Google Scholar
8 Conrad, P. G. Nishimura, P. T. Aherne, D. Schwartz, B. J. Wu, D. Fang, N. Zhang, X. Roberts, J. M., and Shea, K. J. Adv. Mater. 15, 1541 (2003).10.1002/adma.200304602Google Scholar
9 Thorsen, T. Roberts, R. W. Arnold, F. H. and Quake, S. R. Phys. ReV. Lett. 86, 4163 (2001).10.1103/PhysRevLett.86.4163Google Scholar
10 Thorsen, T. Maerkl, S. J. and Quake, S. R. Science 298, 580 (2002).10.1126/science.1076996Google Scholar
11 Rolland, J. P. Dam, R. M. Van, Schorzman, D. A. Quake, S. R. and Desimone, J. M. J. Am. Chem. Soc. 126, 2322 (2004).10.1021/ja031657yGoogle Scholar
12 Xia, Y. Rogers, J. A. Paul, K. E. and Whitesides, G. M. Chem. Rev. 99, 1823 (1999).10.1021/cr980002qGoogle Scholar
13 Odom, T. W. Thalladi, V. R. Love, J. C. and Whitesides, G. M. J. Am. Chem. Soc. 124, 12112 (2002).10.1021/ja0209464Google Scholar
14 Odom, T. W. Love, J. C. Wolfe, D. B. Paul, K. E. and Whitesides, G. M. Langmuir 18, 5314 (2002).10.1021/la020169lGoogle Scholar
15 Choi, K. M. and Rogers, J. A. J. Am. Chem. Soc. 125, 4060 (2003).10.1021/ja029973kGoogle Scholar
16 Choi, K. M. J. Phys. Chem. B. 109, 21525 (2005).10.1021/jp050302tGoogle Scholar