Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:18:28.872Z Has data issue: false hasContentIssue false

From Micro to Nanometric Grain Size CVD Diamond Tools

Published online by Cambridge University Press:  01 February 2011

Flávia A. Almeida
Affiliation:
Ceramics Eng. Dept., CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
Margarida Amaral
Affiliation:
Physics Dept., I3N, University of Aveiro, 3810-193 Aveiro, Portugal.
Ermelinda Salgueiredo
Affiliation:
Ceramics Eng. Dept., CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
António J.S. Fernandes
Affiliation:
Physics Dept., I3N, University of Aveiro, 3810-193 Aveiro, Portugal.
Florinda M. Costa
Affiliation:
Physics Dept., I3N, University of Aveiro, 3810-193 Aveiro, Portugal.
Filipe J. Oliveira
Affiliation:
Ceramics Eng. Dept., CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
Rui F. Silva
Affiliation:
Ceramics Eng. Dept., CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
Get access

Abstract

CVD diamond coated tools are developed for applications as different as turning of cemented carbides and bone drilling. The diamond films are deposited by Hot Filament Chemical Vapor Deposition (HFCVD), with grain sizes varying from conventional micrometric (12 μm) to nanometric (< 100 nm) and film thickness up to 50 μm. Silicon nitride (Si3N4) ceramics are chosen for the base material in order to guarantee maximal adhesion. Both the micrometric and nanometric CVD diamond grades endure the cemented carbide turning showing slight cratering, having flank wear as the main wear mode. However, nanocrystalline diamond present the best behavior regarding cutting forces (<150 N) and tool wear (KM=30 μm, KT=2 μm and VB=110 μm) and workpiece surface finishing (Ra=0.2 μm). In the case of the dental drilling experiments, a polymeric laminated test block is used to simulate the human mandible and maxilla. The temperature rise during drilling is monitored to prevent overheating above 42–47 °C that is known to cause tissue death and implant failure. It is possible to drill with a CVD diamond Si3N4 coated tool with significantly lower forces (fourfold smaller), lower rise in temperature (4°C less), lower spindle speeds (100 rpm) and higher infeed rates (30 mm/min), when compared to the commercial steel (AISI 420) drill bits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J. C., in Synthetic Diamond: Emerging CVD Science and Technology, edited by Spear, K. E. and Dismukes, J. P. (John Wiley & Sons, New York, 1994), cap. 2.Google Scholar
2. May, P. W., Royal Soc. Phil. Trans. A. 358, 473 (2000).Google Scholar
3. Angus, J. C., Will, H. A. and Stanko, W. S., J. Appl. Phys. 39, 2915 (1968).Google Scholar
4. Cline, B. L. and Olson, J. M., in Diamond Films Handbook, edited by Asmussen, J. and Reinhard, D. K. (Marcell Dekker, New York, 2001).Google Scholar
5. D'Errico, G. E. and Calzavarini, R. J. Mater. Process. Technol. 119, 257 (2001).Google Scholar
6. Shen, C. H.,. Surf. Coat. Technol. 86–87, 672 (1996).Google Scholar
7. Uhlmann, E., Lachmund, U. and Brücher, M., Surf. Coat. Technol. 131, 395 (2000).Google Scholar
8. Uhlmann, E. E, and Brücher, M., Annals of CIRP 51, 49 (2002).Google Scholar
9. Chou, Y. K. and Liu, J. Surf. Coat. Technol. 200, 1872 (2005).Google Scholar
10. Zong, W. J., Li, D., Sun, T. and Cheng, K., K, , Diam. Relat. Mater. 15, 1424 (2006).Google Scholar
11. Jin, S., Chen, L. H., McCormack, M. and Reiss, M. E., Appl. Phys. Lett. 63, 622 (1993).Google Scholar
12. Bhushan, B., Subramaniam, V. V., Malshe, A., Gupta, B. K. and Ruan, J. J. Appl. Phys. 74, 4174 (1993).Google Scholar
13. Ozkan, A. M., Malshe, A. P. and Brown, W. D., Diam. Relat. Mater. 6, 1789 (1997).Google Scholar
14. Erdemir, A., Fenske, G. R., Krauss, A. R., Gruen, D. M., McCauley, T. and Csencsits, R. T., Surf. Coat. Techonol. 120–121, 565 (1999).Google Scholar
15. Toprani, N., Catledge, S. A. and Vohra, Y. K., J. Mater. Res. 15, 1052 (2000).Google Scholar
16. Ferrari, A. C. and Robertson, J. Phys. Rev. B 63, 121405 (2001).Google Scholar
17. Bhattacharyya, S., Auciello, O., Birrel, J., Carlisle, J. A., Curtiss, L. A., Goyette, N. A., Gruen, D. M., Krauss, A. R., Schlueter, J., Sumant, A. and Zapol, P. Appl. Phys. Lett. 79, 1441 (2001).Google Scholar
18. Gupta, S., Weiner, B. R. and Morell, G. J. Mater. Res. 17, 1820 (2002).Google Scholar
19. Catledge, S. A., Borham, J., Vohra, Y. K., Lacefield, W. R. and Lemons, J. E., J. Appl. Phys. 91, 5347 (2002).Google Scholar
20. Bruno, P., Bénédic, F., Tallaire, A., Silva, F., Oliveira, F. J., Amaral, M., Fernandes, A. J. S., Cicala, G. and Silva, R. F., Diam. Relat. Mater. 14, 432 (2005).Google Scholar
21. May, P. W., Smith, J. A. and Mankelevich, Y. A., Diamond Relat. Mater. 15, 345 (2006).Google Scholar
22. Haubner, R. and Lux, B. Int. J. Refract. Met. Hard Mater. 20, 93 (2002).Google Scholar
23. Vojs, M., Veselý, M., Redhammer, R., Janík, J., Kadleciková, M., Danis, T., Marton, M., Michalka, M. and Sutta, P. Diam. Relat. Mater. 14, 613 (2005).Google Scholar
24. Amaral, M., Fernandes, A. J. S., Vila, M., Oliveira, F. J. and Silva, R. F., Diam. Relat. Mater. 15, 1822 (2006).Google Scholar
25. Zhang, Y. F., Zhang, F., Gao, Q. J., Peng, X. F., and Lin, Z. D., Diam. Relat. Mater. 10, 1523 (2001).Google Scholar
26. Polini, R., Barletta, M. and Delogu, M. Thin Solid Films 515, 87 (2006).Google Scholar
27. Amaral, M., Oliveira, F. J., Belmonte, M., Fernandes, A. J. S., Costa, F. M. and Silva, R. F., Surf Eng. 19, 410 (2003).Google Scholar
28. Mallika, K. and Komanduri, R. Wear 224, 245 (1999).Google Scholar
29. Polini, R. Thin Solid Films 515, 4 (2006).Google Scholar
30. Belmonte, M., Ferrro, P., Fernandes, A. J. S., Costa, F. M., Sacramento, J. and Silva, R.F., Diam. Relat. Mater. 12, 738 (2003).Google Scholar
31. Belmonte, M., Oliveira, F. J., Sacramento, J., Fernandes, A. J. S. and Silva, R. F., Diam. Relat. Mater. 13, 843 (2004).Google Scholar
32. Collier, M. and Cheynet, J. Proceedings of PM2002 Hard Materials and Diamond Tooling Congress and Exhibition (7–9th October 2002, Lausanne, Switzerland, 2002).Google Scholar
33. Yen, Y. C., Jain, A. and Altan, T. J. Mater. Process. Technol. 146, 72 (2004).Google Scholar
34. Almeida, F. A., Oliveira, F. J., Sousa, M., Fernandes, A. J. S., Sacramento, J. and Silva, R.F., Diam. Relat. Mater. 14, 651 (2005).Google Scholar
35. Almeida, F. A., Fernandes, A. J. S., Silva, R.F. and Oliveira, F. J., Surf. Coat. Technol. 201, 1776 (2006).Google Scholar
36. Almeida, F. A., Amaral, M., Oliveira, F.J. and Silva, R.F., Diam. Relat. Mater. 15, 2029 (2006).Google Scholar
37. Cranin, A. N. and Lemons, J. E., Biomaterials Science - An Introduction to Materials in Medicine, (Elsevier Academic Press, 2004).Google Scholar
38. Chacon, G. E., Bower, D. L, Larsen, P E., McGlumphy, E. A. and Beck, F. M., Int. J. Oral Maxillofac. Implants 64, 265 (2006).Google Scholar
39. Eriksson, R. and Albrektsson, T.., J. Prosth. Dent. 50, 101 (1983).Google Scholar
40. Eriksson, A. and Albrektsson, T. Int. J. Oral Surg. 1, 115 (1982).Google Scholar
41. Eriksson, R., Albrektsson, T. and Magnusson, B.., Scand. J. Plastic Reconst. Surg. 18, 261 (1984).Google Scholar
42. Sharawy, M., Misch, C. E., Weller, N., Tehemar, S. J. Oral Maxillofac. Surg. 60, 1160 (2002).Google Scholar
43. Eriksson, R. A and Adell, R.., J. Oral Maxillofac. Surg. 44, 4 (1986).Google Scholar
44. Karmani, S. Current Orthopaedics 20, 52 (2006).Google Scholar
45. Allan, W., Wiliams, E. D. and Kerawala, C. J. Br. J. Oral Maxillofac. Surg. 43, 314 (2005).Google Scholar
46. Udiljak, T., Ciglar, D. and Skoric, S. Adv. Prod. Eng. Manag. 2, 103 (2007).Google Scholar
47. Aspenberg, P., Anttila, A., Konttinen, Y. T., Lappalainen, R., Goodman, S. B., Nordsletten, L. and Santavirta, S. Biomaterials 17, 807 (1996).Google Scholar
48. Jakubowski, W., Bartosz, G., Szymanski, P. N. and Walkowiak, B. Diam. Relat. Mater. 13, 1761 (2004).Google Scholar
49. Salgueiredo, E., Almeida, F. A., Amaral, M., Fernandes, A. J. S., Costa, F. M., Silva, R. F. and Oliveira, F. J., Diam. Relat. Mater. 18, 264 (2009).Google Scholar