Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T03:03:45.145Z Has data issue: false hasContentIssue false

From Electronic Structure To Thermodynamics

Published online by Cambridge University Press:  26 February 2011

Giovanni B. Bachelet*
Affiliation:
Centro Studi del CNR e Dipartimento di Fisica dell'Universita’ di Trento, 1-38050 POVO TN, Italy
Get access

Abstract

A simple way to extend the remarkable results of Density Functional calculations to finite-temperature properties of materials is the quasi-harmonic theory of Lattice Dynamics. In this framework a thermodynamically consistent theory needs the complete phonon spectrum for a large periodic system (30–100 atoms/cell) at many different volumes, which poses severe practical limitations. In this paper I present the application to a semiconducting system of a method recently proposed by Bachelet and De Lorenzi to overcome these limitations. Based on low-temperature Molecular-Dynamics trajectories (now possible from first principles for semiconducting systems according to the method of Car and Parrinello), the method is shown to provide accurate dynamical matrices for an 8-atom silicon supercell. Such a successful, preliminary test, together with the fact that for larger and/or lower-symmetry systems the computational effort required by the “trajectory approach” is lower than traditional frozen-phonon or force-constant techniques, suggests its use in the determination of dynamical matrices of larger defect or amorphous systems, and thus in the study of their thermodynamics from first principles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1.Bachelet, G.B., in “Crystalline semiconducting materials and devices”, Butcher, P.N., March, N.H. and Tosi, M.P., Eds., Plenum, New York 1986Google Scholar
2.Hohenberg, P.C. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)Google Scholar
3.Hamann, D.R., Schliter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979); G.B. Bachelet, D.R. Hamann and M. Schliter, Phys. Rev. B 26, 4199 (1982)Google Scholar
4.Andersen, O.K., Phys. Rev. B 12, 3060 (1975)Google Scholar
5.Chelikowsky, J.R. and Louie, S.G., Phys. Rev. B 29, 3470 (1984)Google Scholar
6.Baraff, G.A. and Schl~ter, M., Phys. Rev. B 19, 4965 (1979)Google Scholar
7.Bernholc, J., Lipari, N.O., and Pantelides, S.T., Phys. Rev. B 21, 3545 (1980)Google Scholar
8.Gunnarsson, O., Jepsen, O., and Andersen, O.K., Phys. Rev. B 27, 7144 (1983)Google Scholar
9.williams, A.R., Feibelman, P.J., and Lang, N.D., Phys. Rev. B 26, 5433 (1982)Google Scholar
10.Bar-Yam, Y. and Joannopoulos, J.D., Phys. Rev. B 30, 1844 (1984)Google Scholar
11.Yin, M.T. and Cohen, M.L., Phys. Rev. Lett. 45, 1004 (1980); M.T. Yin, Proceedings of the 17th International Conference on the Physics of Semiconductors, 927 (D.J. Chadi and W.A. Harrison, Eds.), Springer, New York (1985); 0. Nielsen and R.M. Martin, Phys. Rev. Lett. 50, 3470 (1983);K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983); S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986)Google Scholar
12.Car, R., Kelly, P.J., Oshiyama, A., Pantelides, S.T., Phys. Rev. Lett. 54, 360 (1985); F. Beeler, Thesis work, Stuttgart 1986 (unpublished); see also Ref.lGoogle Scholar
13.Pandey, K.C., Phys. Rev. Lett. 57, 2287 (1986); C. van de Walle and S.T. Pantelides (unpublished)Google Scholar
14.Flynn, C.P., “Point defects and diffusion”, Clarendon Press, Oxford (1972)Google Scholar
15.Jacucci, G., “Diffusion in crystalline solids” Academic, New York (1985); G. De Lorenzi and G. Jacucci Phys. Rev. B 33, 1993 (1986)Google Scholar
16.Biswas, R. and Ambegaokar, V., Phys. Rev. B 26, 1980 (1982)Google Scholar
17.Hamann, D.R., private comunicationGoogle Scholar
18.Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985)Google Scholar
19.Kamitakahara, W.A., Shanks, H.R., McClelland, J.F., Buchenau, U., Gompf, F., Pintchovious, L., Phys. Rev. Lett. 52, 644 (1984); U. Buchenau, private communicationGoogle Scholar
20.Bachelet, G.B., Jacucci, G., Car, R. and Parrinello, M., Proceedings of the 18th International Conference on the Physics of Semiconductors 801, World Scientific, Singapore (1987)Google Scholar
21.Ibach, H., phys. stat. sol. 31, 625 (1969)Google Scholar
22.Lannoo, M. and Allan, G., Phys. Rev. B 25, 4089 (1982); 33, 8789 (1986)Google Scholar
23.Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986)Google Scholar
24.Bachelet, G.B. and De Lorenzi, G., Physica Scripta, in print (1987)Google Scholar
25.Baldereschi, A., Phys. Rev. B 7, 5212 (1973)Google Scholar
26.Bachelet, G.B., Car, R., Jacucci, G. and Parrinello, M. (unpublished)Google Scholar