Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T17:34:48.468Z Has data issue: false hasContentIssue false

From Crystalline to Glassy: Crack Propagation Modes in Decagonal Quasicrystals

Published online by Cambridge University Press:  01 February 2011

Christoph Rudhart
Affiliation:
Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550 Stuttgart, Germany
Peter Gumbsch
Affiliation:
Institut für Zuverlässigkeit von Bauteilen und Systemen, Universität Karlsruhe, D-76131 Karlsruhe, Germany Fraunhofer Institut für Werkstoffmechanik, D-79194 Freiburg, Germany
Hans-Rainer Trebin
Affiliation:
Institut für Theoretische und Angewandte Physik, Universität Stuttgart, D-70550 Stuttgart, Germany
Get access

Abstract

The propagation of mode-I cracks in a two-dimensional decagonal model quasicrystal is studied by molecular dynamics simulations. The samples are endowed with an atomically sharp seed crack and a temperature gradient. Subsequently the crack is loaded by linear scaling of the displacement field. The response of the crack running into regions of increasing temperature is monitored.

For low temperatures below 30% of the melting temperature Tm the model-quasicrystal fails by brittle fracture. We observe that the crack follows the path of dislocations nucleated at its tip. The crack propagates along well defined planes and circumvents tightly bound clusters. In the medium temperature regime from 30% to 70% Tm the crack is blunting spontaneously by dislocation emission. In the range of 70%-80% Tm the quasicrystal fails by nucleation, growth and coalescence of micro-voids. This gradual, dislocation-free crack extension is caused by plastic deformation which is mediated by localized rearrangements comparable to so-called shear transformation zones in amorphous solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Roberts, S. G., Booth, A. S., and Hirsch, P. B., Mat. Sci. Eng. A 176, 91 (1994).Google Scholar
[2] Gumbsch, P., Riedle, J., Hartmaier, A., and Fischmeister, H. F., Science 282, 1293 (1998).Google Scholar
[3] Falk, M. L. and Langer, J. S., Phys. Rev E. 57, 71927205 (1998).Google Scholar
[4] Falk, M. L., Phys. Rev. B 60, 70627070 (1999).Google Scholar
[5] Mikulla, R., Stadler, J., Krul, F., Trebin, H.-R., and Gumbsch, P., Phys. Rev. Lett. 81, 3163 (1998).Google Scholar
[6] Rudhart, Ch., Gumbsch, P., Trebin, H.-R., in Quasicrystals: Structure and Physical Properties, edited by Trebin, H.-R. (WILEY-VCH, Weinheim, 2003) p. 484.Google Scholar
[7] Deus, C., Wolf, B., and Paufler, P., Phil. Mag. A 75, 11711183 (1997).Google Scholar
[8] Ebert, Ph., Feuerbacher, M., Tamura, N., Wollgarten, M., and Urban, K., Phys. Rev. Lett. 77 3827 (1996)Google Scholar
[9] Baake, M., Kramer, P., Schlottmann, M., and Zeidler, D., Int. J. Mod. Phys. B 4, 2217 (1990).Google Scholar
[10] Brede, M., Hsia, K. J., and Argon, A. S., J. Appl. Phys. 70, 758 (1991).Google Scholar
[11] Gumbsch, P., Zhou, S. J., and, Holian, B. L. Phys. Rev. B 55, 3445 (1997).Google Scholar
[12] Finnis, M. W., Agnew, P., and Foreman, A. J. E., Phys. Rev. B 44, 567 (1991).Google Scholar
[13] Mikulla, R., Gumbsch, P., and Trebin, H.-R., Phil. Mag. Lett. 78, 369 (1998).Google Scholar
[14] Argon, A. S., Acta Metall. 27, 47 (1979).Google Scholar