Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:21:35.698Z Has data issue: false hasContentIssue false

Frictional Forces in Thin Liquid Films

Published online by Cambridge University Press:  15 February 2011

Michael Urbakh
Affiliation:
School of Chemistry, Tel-Aviv University, Tel Aviv 69978, Israel
Joseph Klafter
Affiliation:
School of Chemistry, Tel-Aviv University, Tel Aviv 69978, Israel
Leonid Daikhin
Affiliation:
School of Chemistry, Tel-Aviv University, Tel Aviv 69978, Israel
Get access

Abstract

Shear thinning of confined liquids is studied in the framework of the time dependent Ginzburg-Landau equation coupled to a shear-induced velocity field. Scaling relationship between the effective viscosity and the shear rate is analytically derived with an exponent which depends on the velocity profile within the liquid and on the boundary conditions. The velocity profile is derived in the limit of low shear rate. Thinning is observed for shear rates faster than typical liquid relaxation rates. Relevance to existing systems and predictions amenable to new experiments are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Singer, I. L and Pollock, H. M., Eds. Fundamentals of Friction, NATO ASI Proceedings, (Kluwer, Dordrecht, 1992).Google Scholar
2. MRS Bulletin, 18 (5) (1993), see pages 1559.Google Scholar
3. (a) Gee, M.L.,McGuiggan, P.M. and Israelachvili, J.N., J. Chem. Phys. 93, 1895 (1990); (b) H. Yoshizawa, P.M. McGuiggan and J.N. Israelachvili, Science 259, 1305 (1993).Google Scholar
4. (a) Van Alsten, J. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988); (b) H-W. Hu, G.A. Carson and S. Granick Phys. Rev. Lett. 66, 2758 (1991); (c) S. Granick, Science 253, 1374 (1992)Google Scholar
5. (a) Thompson, P.A. and Robbins, M.O., Phys. Rev. A 41, 6830 (1990); Science 250, 792 (1990); (b) P.A. Tompson, G.S. Grest and M.O. Robbins, Phys. Rev. Lett. 66, 3448 (1992).Google Scholar
6. (a) Bitsanis, I., Magda, J.J., Davis, H.T. and Tirrell, M., J. Chem. Phys. 87, 1733 (1987); (b) I. Bitsanis, S.A. Somers, H.T. Davis and M. Tirrell, J. Chem. Phys. 93, 3427 (1990).Google Scholar
7. Bocquet, L. and Barrat, J.-L., Phys. Rev. Lett. 70, 2726 (1993); Phys. Rev. B 49, 3079 (1994).Google Scholar
8. Rabin, Y. and Hersht, I., Physica A 200, 708 (1993).Google Scholar
9. (a) Kawasaki, K., Ann. Phys. (NY), 61, 1 (1970); (b) T. Koga and K. Kawasaki, Physica A 196, 389 (1993); (c) T. Koga, K. Kawasaki, M. Takenaka and T. Hashimoto, Physica A 198, 473 (1993).Google Scholar
10. Hohenberg, P.C. and Halperin, B.I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar
11. (a) Marcelja, S. and Radic, N., Chem. Phys. Lett. 42, 129 (1976); (b) M.E. Fisher and H. Nakanishi, J. Chem. Phys. 75, 5857 (1981); (c) R. Evans, J. Phys.: Condens. Matt. 2, 8989 (1990); (d) S. Dietrich, in: Phase Transitions and Critical Phenomena, vol.12, ed. by C. Domb and J. L. Lebowitz (Academic Press, New York, 1988) p.l.Google Scholar
12. de Gennes, P.G., Rev. Mod. Phys. 57, 827 (1985).Google Scholar
13. The detail discussion of the results of the self-consistent solution of the Navier-Stokes equation will be presented in a future publication.Google Scholar
14. Reiter, G., Demirel, A. L., Peanasky, J., Cai, L. L. and Granick, S., J. Chem. Phys. 101, 2606 (1994).Google Scholar
15. Abramovitz, M. and Stegun, I., Eds. Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar