Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:44:24.494Z Has data issue: false hasContentIssue false

Free-Standing PEDOT:PSS/PLA Bilayer Nanosheets with Ink-Jet Patterned Microelectrodes: Towards the Development of Ultra-Thin, Conformable, Floating Circuits and Smart Biointerfaces.

Published online by Cambridge University Press:  15 February 2013

Alessandra Zucca
Affiliation:
Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy). Biorobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy).
Francesco Greco*
Affiliation:
Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy).
Barbara Mazzolai
Affiliation:
Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy).
Virgilio Mattoli
Affiliation:
Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Italy).
Get access

Abstract

Novel solutions and applications in the biomedical field could come from exploiting the electroactive properties of conducting polymers towards the development of responsive smart biointerfaces and of flexible, conformable, biocompatible systems. In this sense it is mandatory to control material’s conductivity in situ and this requires the development of suitable patterning processes and the fabrication of individually addressable microelectrodes. Based on the recent introduction by our group of free-standing nanofilms of conductive polymers, the aim of this work was to describe a method for the fabrication of patterned ultra-thin free-standing PEDOT:PSS/Poly (lactic acid) (PLA) bilayer nanosheets. The proposed method involves an ink-jet patterning technique, based on localized overoxidation of PEDOT:PSS by means of a sodium hypochlorite solution. Here we described the fabrication method and characterized the realized nanosheets in terms of their thickness, contact angle, conductivity. The overall process permitted to realize patterned free-standing nanosheets that, despite their low thickness, are very robust and conformable on tissues or on soft and rigid substrates, while allowing for an electrical control of their surface properties. Possible applications are foreseen in the field of conformable electronics, e.g. as electrodes on the brain or smart conductive substrates for cell culturing and stimulation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P. and Mattoli, V., Soft Matter 7, 1064210650 (2011).CrossRefGoogle Scholar
Greco, F., Zucca, A., Taccola, S., Menciassi, A., Dario, P. and Mattoli, V., MRS Online Proceedings Library 1403 (2012).Google Scholar
Greco, F. and Mattoli, V., “Introduction to Active Smart Materials in Biomedical Applications” in Piezoelectric Nanomaterials for Biomedical Applications ed. Ciofani, G. and Menciassi, A. (Springer Berlin Heidelberg, 2012), pp. 127.Google Scholar
Berggren, M. and Richter-Dahlfors, A., Adv. Mater. 19, 32013213 (2007).CrossRefGoogle Scholar
Isaksson, J., Kjäll, P., Nilsson, D., Robinson, N., Berggren, M. and Richter-Dahlfors, A., Nat. Mater. 6, 673679 (2007).CrossRefGoogle Scholar
Saltó, C., Saindon, E., Bolin, M., Kanciurzewska, A., Fahlman, M., Jager, E. W. H., Tengvall, P., Arenas, E. and Berggren, M., Langmuir 24, 1413314138 (2008).CrossRefGoogle Scholar
Bolin, M. H., Svennersten, K., Wang, X., Chronakis, I. S., Richter-Dahlfors, A., Jager, E. W. H. and Berggren, M., Sens. Actuators, B 142, 451456 (2009).CrossRefGoogle Scholar
Kim, D.-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y., Hwang, K.-C., Zakin, M.R., Litt, B., Rogers, J.A., Nat. Mater. 9, 511517 (2010).CrossRefGoogle Scholar
Viventi, J. et al. ., Nat. Neuroscience 14, 15991605 (2011).CrossRefGoogle Scholar
Kim, D.-H. et al. ., Science 333, 838843 (2011).CrossRefGoogle Scholar
Svennersten, K., et al. ., Biochimica et Biophysica Acta - General Subjects 1810, 276285 (2011).CrossRefGoogle Scholar
Nambiar, S. and Yeow, J. T. W., Biosensors and Bioelectronics 26, 18251832 (2011).CrossRefGoogle Scholar
Greco, F., et al. ., ACS Applied Materials & Interfaces, DOI: 10.1021/am301908w (2012).Google Scholar