Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T08:28:49.182Z Has data issue: false hasContentIssue false

Freeform Fabrication of Ceramics by Hot-Melt Ink-Jet Printing

Published online by Cambridge University Press:  10 February 2011

B. Derby
Affiliation:
Manchester Materials Science Centre, UMIST, Grosvenor St., Manchester, UK
N. Reis
Affiliation:
Manchester Materials Science Centre, UMIST, Grosvenor St., Manchester, UK Department of Materials, University of Oxford, Parks Rd., Oxford, UK
K.A.M. Seerden
Affiliation:
Department of Materials, University of Oxford, Parks Rd., Oxford, UK
P.S. Grant
Affiliation:
Department of Materials, University of Oxford, Parks Rd., Oxford, UK
J.R.G. Evans
Affiliation:
Department of Materials Engineering, Queen Mary and Westfield College, Mile End Rd., London, UK
Get access

Abstract

Ink-jet printing is a versatile freeform fabrication technique with a high spatial resolution. By suspending ceramic particles in low melting point organic materials and printing above the melting point, rapid cooling on impact after printing results in rapid layer growth. Current results from a collaborative programme studying the hot wax ink-jet printing of structural ceramic components will be reported. The influence of key fluid properties on the ink-jet deposition process are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sachs, E., Cima, M., Williams, P., Brancazio, D., Cornie, J., ASME J. Eng. Ind. 114, 481 (1992).Google Scholar
2 Yoo, J., Cima, M., Sachs, E., and Suresh, S., Ceram. Eng. Sci. Proc. 16 [5], 755 (1995).Google Scholar
3 Yoo, J., Cho, K., Bae, W., Cima, M. and Suresh, S., J. Amer. Ceram. Soc. 81, 21 (1998).Google Scholar
4 Teng, W.D., Edirisinghe, M.J., Evans, J.R.G.. J. Amer. Ceram. Soc., 80, 486 (1997).Google Scholar
5 Xiang, Q.F., °Evans, J.R.G., Edirisinghe, M.J., Blazdell, P.F., Proc. Inst. Mech Eng. B-J. Eng. Manuf 211, 211 (1997).Google Scholar
6 Slade, C.E., °Evans, J.R.G.. Mater. Sci. Lett. 17, 1669 (1998).Google Scholar
7 Mott, M., Song, J.H., °Evans, J.R.G., J. Amer. Ceram. Soc. 82, 1653 (1999).Google Scholar
8 Windle, J. and Derby, B., J. Mater. Sci. Lett. 18, 87 (1999).Google Scholar
9 Seerden, K.A.M., Reis, N., Derby, B., Grant, P.S., Halloran, J.W. and Evans, J.R.G., MRS Symp. Proc. 542, 141 (1999).Google Scholar
10 Reis, N., Seerden, K.A.M., Derby, B., Grant, P.S., Halloran, J.W. and Evans, J.R.G., MRS Symp. Proc. 542, 147 (1999).Google Scholar
11 Fromm, J.E., IBM J. Res. Dev. 28 p. 322 (1984).Google Scholar
12 Bhola, R. and Chandra, S., J. Mater. Sci. 34, 4883 (1999).Google Scholar
13 Mundo, C., Sommerfield, M. and Tropea, C., Inter. J. Multiphase Flow, 21, 151 (1995).Google Scholar
14 Stow, C.D. and Hadfield, M.G., Proc. Royal Soc. Lon. A 373, 419 (1981).Google Scholar
15 Song, J.H. and Evans, J.R.G., J. Rheol. 40, p. 131152 (1996).Google Scholar
16 Reis, N. and Derby, B., in this issue.Google Scholar