Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:46:57.206Z Has data issue: false hasContentIssue false

Fragmentation of Highly Charged Metallic Clusters

Published online by Cambridge University Press:  15 February 2011

Estela Blaisten-Barojas
Affiliation:
CSI/ Institute for Computational Sciences and Informatics, George Mason University, Fairfax, VA 22030
Yibing Li
Affiliation:
CSI/ Institute for Computational Sciences and Informatics, George Mason University, Fairfax, VA 22030
A. Belenki
Affiliation:
CSI/ Institute for Computational Sciences and Informatics, George Mason University, Fairfax, VA 22030
Get access

Abstract

Multiply charged metal clusters undergo fission at a certain size. This critical size can be predicted by the liquid drop model when some modifications are taken into consideration. In this work we revise the asymmetric liquid drop model (ALD) and modify it for the alkali metals. This modification addresses those fragmentation channels in which a parent cluster with charge Ze fissions into two fragments. One of the fragments is small and singly charged whereas the second fragment is large and carries the rest of the charge. A different energetic balance equation is presented in which the ionization energy of a single atom and the energy of formation of a small cluster are included. Results and comparison to experiments is provided for Na and Cs clusters. Prediction of the critical size of Na and Cs clusters with Ze>7 is part of the discussion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sugano, S., in Microclusters, edited by Sugano, S., Nishina, O., Ohnishi, S. (Springer, Berlin, 1987), p. 226; Microcuster Physics (Sringer, Berlin, 1991).Google Scholar
2. Sugano, S., Tamura, A., Ishii, Y.,Z. Phys. D, 12, 213 (1989).Google Scholar
3. Nakamura, M., Ishii, Y., Tamura, A., Sugano, S., Phys. Rev. A, 42, 2267 (1990).Google Scholar
4. Nakamura, N.,Z. Phys. D., 19, 149 (1991).Google Scholar
5. Echt, O., in Physics and Chemistry of Small Clusters. edited by Jena, P., Rao, B. K., and Khanna, S. N. (Plenum Press, New York, 1987).Google Scholar
6. Brechignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M., Phys. Rev. Lett. 64, 2893 (1990).Google Scholar
7. Brechignac, C., Cahuzac, Ph., Carlier, F., Leygnier, J., Sarfati, A., Phys. Rev. B, 44, 11386 (1991).Google Scholar
8. Saunders, W. A., Phys. Rev. Let., 64, 3046 (1990).Google Scholar
9. Saunders, W. A., Dam, N.,Z. Phys. D, 20, 111 (1991).Google Scholar
10. Rabin, I., Jackschath, C., Schulze, W.,Z. Phys. D, 19, 153 (1991).Google Scholar
11. Gotts, N. G., Lethbridge, P. G., Stace, A. J.,J. Chem. Phys., 96, 408 (1992).Google Scholar
12. Naher, U., Gohlich, H., Lange, T., Martin, T. P., Phys Rev. Lett, 68, 3416 (1992).Google Scholar
13. Martin, T. P., Naher, U., Gohlich, H., Lange, T., Chem. Phys. Lett., 196, 113 (1992).Google Scholar
14. Naher, U., Frank, S., Martin, T. P., Z. Phys D, 31, 191 (1994).Google Scholar
15. Bohr, N. and Wheeler, J. A., Phys. Rev., 56, 426 (1939).Google Scholar
16. Iniguez, M. P., Alonso, J. A., Aller, M. A., Balbas, L. C., Phys. Rev., 34, 2152 (1986).Google Scholar
17. Seidl, M., Meiwes-Broer, K. H., Brack, M.,J. Chem. Phys., 95, 1295 (1991).Google Scholar
18. Barnett, R. N., Landman, U., Rajagopal, G., Phys. Rev. Lett., 22, 3058 (1991).Google Scholar
19. Bakaltchev, N. and Blaisten-Barojas, E., CSI/GMU Report (1993), unpublished.Google Scholar