Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T02:43:52.772Z Has data issue: false hasContentIssue false

Fracture and Flow Via Nonequilibrium Molecular Dynamics

Published online by Cambridge University Press:  25 February 2011

W. G. Hoover
Affiliation:
University of California & Lawrence Livermore National Laboratory Livermore, California 94SSO U. S. A.
G. De Lorenzi
Affiliation:
University of California & Lawrence Livermore National Laboratory Livermore, California 94SSO U. S. A.
B. Moran
Affiliation:
University of California & Lawrence Livermore National Laboratory Livermore, California 94SSO U. S. A.
J. A. Moriarty
Affiliation:
University of California & Lawrence Livermore National Laboratory Livermore, California 94SSO U. S. A.
A. J. C. Ladd
Affiliation:
University of California & Lawrence Livermore National Laboratory Livermore, California 94SSO U. S. A.
Get access

Abstract

The scope of molecular dynamics problems designed to simulate materials properties is described, focussing on the limits computation imposes on space and time scales, as well as the limits theoretical understanding imposes on our knowledge of interatomic forces. Five strategies for improving the efficiency of the simulations are described. Shock-induced solid-solid phase transformations are discussed to illustrate these ideas.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tuck, J. L. and Menzel, M. T., Advan. Math. 9, 399(1972).Google Scholar
[2] Abraham, F. F., Rudge, W. E., Auerbach, D. J., and Koch, S. W., Phys. Rev. Letts. 52, 445(1984).CrossRefGoogle Scholar
[3] See Berendsen's, H. contribution in the Proceedings of the Enrico Fermi International Summer School on “Molecular Dynamics Simulation of Statistical-Mechanical Systems” (Lake Como 1985), and Milne, W. E., Numerical Solution of Differential Equations (Dover, New York, 1970).Google Scholar
[4] McMahan, A. K. and Moriarty, J. A., Phys. Rev. B 27, 3235(1983).Google Scholar
[5] Barnett, R. N., Cleveland, C. L., and Landman, U., Phys. Rev. Letts. 54, 1579(1985).Google Scholar
[6] Car, R. and Parrinello, M., Phys. Rev. Letts. 55, 2471(1985)Google Scholar
[7] Evans, D. J. and Hoover, W. G., Ann. Rev. Fluid Mechanics 18, 243(1985)Google Scholar
[8] Posch, H. A., Hoover, W. G., and Uesely, F. J., Phys. Rev. A (submitted)Google Scholar
[9] Moran, B., Ph. D. Dissertation, “Crack Initiation and Propagation in the Two-Dimensional Triangular Lattice,” University of California at Davis-Livermore(1983).Google Scholar
[10] Ladd, A. J. C., “Molecular Dynamics Studies of Plastic Flow at High Strain Rates,” Topical Conference on Shockwaves, Spokane, Washington, (July 1985)Google Scholar
[11] Nose, S., J. Chem. Phys. 81, 511(1984).Google Scholar
[12] Hoover, W. S., Phys. Rev. A. 31, 1695(1985).Google Scholar
[13] Evans, D. J. and Holian, B. L., J. Chem. Phys. 83, 4069(1985).Google Scholar
[14] Hoover, W. G., Ladd, A. J. C., and Moran, B., Phys. Rev. Letts 48, 1818(1982).CrossRefGoogle Scholar
[15] Grover, R., Hoover, W. G., and Moran, B., J. Chem. Phys. 83, 1255(1985)Google Scholar
[16] Ross, M., Repts. Prog. Phys. 48, 1(1985).Google Scholar
[17] Nellis, W. J., Moss, W. C., Radousky, H. B., Mitchell, A. C., Summers, L. T., Dalder, E. N., Maple, M. B., and McElfresh, M., “Superconducting Critical Temperatures of Niobium Recovered from Megabar Dynamic Pressures,” Lawrence Livermore Laboratory Preprint UCRL-92742(June 1985).CrossRefGoogle Scholar
[18] Holian, B. L., Hoover, W. G., Moran, B., and Straub, G. K., Phys. Rev. A 22, 2798(1980).Google Scholar