Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T05:17:37.520Z Has data issue: false hasContentIssue false

Fracture and Fatigue in a Zr-Based Bulk Metallic Glass

Published online by Cambridge University Press:  10 February 2011

C. J. Gilbert
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720–1760
V. Schroeder
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720–1760
R. O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720–1760
Get access

Abstract

The fracture and fatigue properties of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 (at.%) bulk metallic glass alloy have been examined. The plane-strain fracture toughness of the fully amorphous alloy was found to exceed 50 MPa√m, although results were sensitive to strain rate, showed significant variability and were influenced by the presence of residual stresses following processing. Fracture surfaces exhibited a characteristic vein morphology, consistent with micromechanical models for meniscus instabilities. Local melting was evident, consistent with the emission of light during rupture and very high local temperatures (>1000 K) measured during fracture. Upon partial or complete crystallization, the alloy was severely embrittled, with toughnesses dropping to ∼1 MPa√m and the hardness increasing by ∼10%. Under cyclic loading, crack-propagation behavior in the amorphous structure was similar to that observed in polycrystalline metals; the crack-advance mechanism was associated with alternating crack-tip blunting and resharpening, as evidenced by presence of fatigue striations. Conversely, the (unnotched) stress-life (S/N) properties were markedly different. Crack initiation and subsequent growth occurred quite readily due to the lack of microstructural barriers that would normally provide local crack-arrest points. This resulted in a very low fatigue limit of∼4% the ultimate tensile strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gilman, J. J., J. Appl. Phys. 46, 1625–33 (1975).Google Scholar
2. Pampillo, C. A. and Reimschuessel, A. C., J. Mater. Sci. 9, 718–24 (1974).Google Scholar
3. Argon, A. S., Acta Metall. 27, 4758 (1979).Google Scholar
4. Leamy, H. J., Chen, H.S., and Wang, T. T., Metall. Trans. 3, 699708 (1972).Google Scholar
5. Spaepen, F., Acta Metall. 25, 407–15 (1977).Google Scholar
6. Kimura, H. and Masumoto, T., Scripta Metall. 9, 211–22 (1975).Google Scholar
7. Srolovitz, D., Vitek, V., and Egami, T., Acta Metall. 31, 335–52 (1983).Google Scholar
8. Inoue, A., Nakamura, T., Nishiyama, N., Masumoto, T., Mater. Trans. JIM 33, 937–45 (1992).Google Scholar
9. Inoue, A., Zhang, T., and Takeuchi, A., Appl. Phys. Lett. 71, 464–66 (1997).Google Scholar
10. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342–44 (1993).Google Scholar
11. Lin, X. H. and Johnson, W. L., J. Appl. Phys. 78, 6514–19 (1995).Google Scholar
12. Gilbert, C. J., Ritchie, R. O., and Johnson, W. L., Appi. Phys. Lett. 71,476–78 (1997).Google Scholar
13. Gilbert, C. J., Lippmann, J. M., and Ritchie, R. O., Scripta Mater. 38, 537–42 (1998).Google Scholar
14. Conner, R. D., Rosakis, A. J., Johnson, W.L., Owen, D.M., Scripta Mater. 37, 1373–78 (1997).Google Scholar
15. Liu, C. T., Heatherly, L., Easton, D. S., Carmichael, C. A., Schniebel, J. H., Chen, C. H., Wright, J. L., Yoo, M. H., Horton, J. A., and Inoue, A., Metall. Trans. A 29, 1811–20 (1998).Google Scholar
16. Lowhaphandu, P. and Lewandowski, J. J., Scripta Mater. 38, 1811–17 (1998).Google Scholar
17. Bruck, H. A., Christman, T., Rosakis, A. J., and Johnson, W. L., Scripta Metall. Mater. 30, 429–34 (1994).Google Scholar
18. Johnson, W. L. and Peker, A., in Science and Technology of Rapid Solidification and Technology, edited by Otooni, M. A. (Netherlands: Kluwer Acad. Publ.), pp. 2541 (1995).Google Scholar
19. Johnson, W. L., California Institute of Technology, unpublished research (1997).Google Scholar
20. Busch, R., Schneider, S., Peker, A., and Johnson, W. L., Appl. Phys. Lett. 67, 1544–46 (1995).Google Scholar
21. Schneider, S. P., Thiyagarajan, P., and Johnson, W. L., Appl. Phys. Lett. 68, 493–95 (1996).Google Scholar
22. Peker, A. and Johnson, W. L., Mater. Sci. Eng. A 179/180, 173–75 (1994).Google Scholar
23. Fecht, H. J., Philos. Mag. B 76, 495503 (1997).Google Scholar
24. Spriano, S., Antonione, C., Doglione, R., Battezzati, L., Cardoso, S., Soares, J. C., and da Silva, M. F., Philos. Mag. B 76, 529–40 (1997).Google Scholar
25. Lawn, B. R., Fracture of Brittle Solids, 2nd ed, Cambridge University Press (1993).Google Scholar
26. Alpas, A. T., Edwards, L., and Reid, C. N., Mater. Sci. Eng. 98, 501–04 (1988).Google Scholar
27. Tatschl, A. and Pippan, R., Schmid Institute, Leoben, private communication (1997).Google Scholar
28. Argon, A. S. and Salama, M., Mater. Sci. Eng. 23, 219–30 (1976).Google Scholar
29. Ritchie, R. O., J. Eng. Mater. Tech., Trans. ASME Series H 99, 195204 (1977).Google Scholar
30. Venkateswara Rao, K. T. and Ritchie, R. O., Int. Mater. Rev. 37, 153–85 (1992).Google Scholar
31. Paris, P. C. and Erdogan, F., J. Basic Eng. 85, 528–34 (1963).Google Scholar
32. Gilbert, C. J., Dauskardt, R. H., Steinbrech, R. W., Petrany, R. N., and Ritchie, R. O., J. Mater. Sci. 30, 643–54 (1995).Google Scholar
33. Dill, S. J., Bennison, S. J., and Dauskardt, R. H., J. Am. Ceram. Soc. 80, 773–76 (1997).Google Scholar
34. Dauskardt, R.H., James, M.R., Porter, J.R., Ritchie, R.O., J. Am. Ceram. Soc. 75, 759–71 (1992).Google Scholar
35. Elber, W., Eng. Fract. Mech. 2, 3745 (1970).Google Scholar
36. Schmidt, R. A. and Paris, P.C., in Progress in Flaw Growth and Fracture Toughness Testing (Philadelphia, PA: American Society for Testing and Materials ), 79–94 (1973).Google Scholar
37. Suresh, S. and Ritchie, R.O., in Fatigue Crack Growth Threshold Concepts, edited by Davidson, D. L. and Suresh, S. (Warrendale, PA: TMS-AIME), 227–61 (1984).Google Scholar
38. Alpas, A. T., Edwards, L., and Reid, C. N., Eng. Fract. Mech. 36, 7792 (1990).Google Scholar
39. Alpas, A. T., Edwards, L., and Reid, C. N., Metall. Trans. A 20, 1395–409 (1989).Google Scholar
40. Ogura, T., Fukushima, K., and Masumoto, T., Mater. Sci. Eng. 23, 231–35 (1976).Google Scholar
41. Brown, W. F., Jr., Aerospace Structural Metals Handbook, vol. code 1224, Metals and Ceramics Information Center, 130 (1989).Google Scholar
42. Taylor, G. I., Proc. R. Soc. London A201, 192–96 (1950).Google Scholar
43. Fields, R. J. and Ashby, M. F., Philos. Mag. 33, 3348 (1976).Google Scholar
44. Tsai, R. L. and Raj, R., Acta Metall. 30, 1043–58 (1982).Google Scholar
45. Bruck, H. A., Rosakis, A. J., and Johnson, W. L., J. Mater. Res. 11, 503511 (1996).Google Scholar
46. Gilbert, C. J., Ager, J. W., III, Schroeder, V., and Ritchie, R. O., this volume.Google Scholar
47. LaMadrid, M. A., O'Connor, S. D., Peker, A., Johnson, W. L., and Baldeschwieler, J. D., J. Mater. Res. 11, 1494–99 (1996).Google Scholar
48. Ritchie, R. O., Mater. Sci. Eng. A 103, 1528 (1988).Google Scholar
49. McClintock, F. A. and Pelloux, R. M. N., Boeing Scientific Research Laboratories Document DJ-82–0708 (1968), cited in R. M. N. Pelloux, Trans. ASM 62, 281–85 (1969).Google Scholar
50. Miller, K. J., Fatigue Fract. Engng. Mater. Struct. 10, 93113 (1987).Google Scholar
51. Davis, L. A., J. Mater. Sci. 11, 711–17 (1976).Google Scholar
52. Ogura, T., Masumoto, T., and Fukushima, K., Scripta Metall. 9, 109–14 (1975).Google Scholar