Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:20:04.529Z Has data issue: false hasContentIssue false

Fractal Properties of Fracture Surfaces: Roughness Indices and Relevant Lengthscales

Published online by Cambridge University Press:  03 September 2012

Elisabeth Bouchaud*
Affiliation:
Direction Matdriaux, O.N.E.R.A., 29 Av. de la Division Leclerc B.P. 72, 92322 Chitillon Cedex, FRANCE
Get access

Abstract

Experiments aiming at the measurement of the roughness index ζ of “rapid” fracture surfaces are briefly reviewed. For rapid crack propagation, measured values of ζ are close to 0.8, which seems to be a universal exponent. However, it is argued, by re-writing the Griffith criterion for a self-affine crack, that the self-affine correlation length ξ might depend upon the microstructure, and hence on the fracture toughness. More recent experiments are also described, which reveal at smaller lengthscales the existence of a quasi-static fracture regime separated from the previously studied rapid fracture regime by a crossover length which decreases with increasing crack velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mandelbrot, B.B., Ness, J.W. Van, SIAM Rev. 10, 422 (1968).Google Scholar
[2] Mandelbrot, B.B., Phys. Scr. 32, 257 (1985).Google Scholar
[3] Isichenko, M.B., Review of Modern Physics 64, 961 (1992).Google Scholar
[4] Bouchaud, E., in Dislocations 93, edit. Bréchet, Y., Kubin, L. P., Rabier, J., Sol. Stat. Phenomena 35-36, Scitec Publications, 353 (1993).Google Scholar
[5] Family, F., in Fractals in the Natural and Applied Sciences, edit. Novak, M. M., Elsevier Science B.V. (North-Holland), 1 (1994).Google Scholar
[6] Feder, J., Fractals, Plenum Press (New-York), (1988).Google Scholar
[7] Mandelbrot, B.B., Passoja, D.E., Paullay, A.T., Nature (London) 308, 721 (1984).Google Scholar
[8] Maloy, K.J., Hansen, A., Hinrichsen, E. L., Roux, S., Phys. Rev. Lett. 68, 213 (1992).Google Scholar
[9] Schmittbuhl, J., Gentier, S., Roux, S., Geophys. Lett., 20, 639, (1993).Google Scholar
[10] Mecholsky, J.J., Passoja, D.E., Feinberg-Ringel, K.S., J. Am. Ceram. Soc. 72, 60 (1989).Google Scholar
[11] Mu, Z.Q., Lung, C.W., J. Phys. D: Applied Physics 21, 848 (1988).Google Scholar
[12] Dauskardt, R.H., Haubensak, F., Ritchie, R.O., Acta Metall. Mater. 38, 143 (1990).Google Scholar
[13] Bouchaud, E., Lapasset, G., Planés, J., Europhys. Lett. 13, 73 (1990).Google Scholar
[14] Bouchaud, E., Lapasset, G., Planés, J., Navdos, S., Phys. Rev. B, 48, 2917 (1993).Google Scholar
[15] Planés, J., Bouchaud, E., Lapasset, G., Fractals, 1, 1059 (1993).Google Scholar
[16] Lemaire, E., Abdelhaye, Y. Ould Mohamed, Larue, J., Benoit, R., Levitz, P., Damme, H. Van, Fractals 1, 968 (1993).Google Scholar
[17] Imre, A., Pajkossy, T., Nyikos, L., Acta Metall. Mater. 40, 1819 (1992).Google Scholar
[18] Milman, V. Y., Blumenfeld, R., Stelmashenko, N. A., Ball, R. C., Phys. Rev. Lett. 71, 204, (1993).Google Scholar
[19] Milman, V. Y., Stelmashenko, N. A., Blumenfeld, R., preprint (1994).Google Scholar
[20] McAnulty, P., Meisel, L.V., Cote, P.T., Phys. Rev. A 46, 3523 (1992).Google Scholar
[21] Nakano, A., Kalia, R. K., Vashishta, P., Phys. Rev. Lett. 73, 2336 (1994).Google Scholar
[22] Hénaux, S., Daguier, P., Gailloteau, E., Creuzet, F., Bouchaud, E., in preparartion.Google Scholar
[23] Kardar, M., Nul. Phys. B290, [FS20], 582 (1987).Google Scholar
[24] Mézard, M., Parisi, G., J. Phys. France I 1, 809 (1991).Google Scholar
[25] Halpin-Healy, T., Phys. Rev. A 42, 711 (1990).Google Scholar
[26] Chudnovsky, A., Kunin, B., J. Appl. Phys. 62, 4124 (1987).Google Scholar
[27] Kardar, M., in Disorder and Fracture, edited by Charmet, J.C., Roux, S., Guyon, E., (Plenum, New York (1990).Google Scholar
[28] Roux, S., Franvois, D., Scripta Metall. 25, 1092 (1991).Google Scholar
[29] Engoy, T., Maloy, K. J., Hansen, A., Roux, S., Phys. Rev. Lett., 73, 834 (1994).Google Scholar
[30] Kertész, J., Horvéth, V., Weber, F., Fractals 1, 67 (1993).Google Scholar
[31] Kardar, M., Zhang, Y.-C., Europhys. Lett. 8, 233 (1989).Google Scholar
[32] Hansen, A., Hinrichsen, E.L., Roux, S., Phys. Rev. Lett., 66, 2476 (1991).Google Scholar
[33] Griffith, A.A., Phil. Trans. Roy. Soc. Lond. A221, 163 (1920).Google Scholar
[34] Mosolov, A.B., Europhys. Lett. 24, 673 (1993).Google Scholar
[35] Bouchaud, E., Bouchaud, J.-P., accepted for publication in Phys. Rev. B, Rapid Communication (1994).Google Scholar
[36] Bouchaud, E., Navéos, S., submitted to Physical Review Letters (1994).Google Scholar
[37] Lawn, B.R., Fracture of brittle solids, Cambridge University Press (Cambridge), 2nd edition, (1993).Google Scholar
[38] Besnerais, G. Le, Menet, S., Bouchaud, E., Boivin, D., Lapasset, G., in preparation.Google Scholar
[39] Blackburn, M.J., Smith, M.P., US Patent n° 4,716,020, (1987).Google Scholar
[40] Fineberg, J., Gross, S.P., Marder, M., Swinney, H.L., Phys. Rev. Lett. 67, 141 (1984).Google Scholar
[41] see for example Field, J.E., Contemp. Phys. 12, 1 (1971); E.H. Yoffe, Phil. Mag. 42, 673 (1961); K. Ravi-Chandar, W.G. Knauss, Int. J. Fract. 26, 65 (1984); 141 (1984)Google Scholar
[42] Bouchaud, J.-P., Bouchaud, E., Lapasset, G., Planés, J., Phys. Rev. Lett. 71, 2240, (1993); E. Bouchaud, J.-P. Bouchaud, J. Planés, G. Lapasset, Fractals 1, 1051 (1993). 294, 835 (1982).Google Scholar
[43] Sapoval, B., Chazalviel, J.-N., Peyriére, J., Phys. Rev. A 38, 5867 (1988).Google Scholar
[44] Ertas, D., Kardar, M., Phys. Rev. Lett. 69, 889, (1992).Google Scholar
[45] Ertas, D., Kardar, M., preprint (1994).Google Scholar