Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T06:16:49.402Z Has data issue: false hasContentIssue false

Fractal Analysis of the Microstructure of Aisi 304 Steel.

Published online by Cambridge University Press:  10 February 2011

M. Hinojosa
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y E1éctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc. F, 66450. San Nicolás de los Garza, N.L. México.
V. Trejo
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y E1éctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc. F, 66450. San Nicolás de los Garza, N.L. México.
U. Ortiz
Affiliation:
DIMAT, Facultad de Ingeniería Mecánica y E1éctrica, Universidad Autónoma de Nuevo León, A.P. 076 suc. F, 66450. San Nicolás de los Garza, N.L. México.
Get access

Abstract

The present work reports the results of fractal analysis of the grain boundaries of AISI 304 stainless steel. Microstructure in the non deformed condition is compared against microstructure with 50% tensile strain. Observations were made by optical microscopy, magnifications used were 50, 100, 200, 400, and 1000x. Measurements were made over digitized images using image analysis. Fractal dimension of the grain boundaries were obtained using Richardson plots of perimeter against yardstick length. Our results agree well with reported values for different natural fractal curves. We found that, in general, grains exhibit two different fractal dimensions: one structure dimension that gives information about the morfology of the grain and one texture dimension which accounts for the fine details of the grain boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B.B.. The Fractal Geometry of Nature. Freeman, New York, 1982.Google Scholar
2. Falconer, K.J. Fractal Geometry, John Wiley and sons, 1990.Google Scholar
3. Barnsley, , Fractals Everywhere. Academic Press, 1988.Google Scholar
4. Peitgen, , Jurgens, and Saupe, . Chaos and Fractals. Springer-Verlag, New York, 1992.Google Scholar
5. Kaye, , A Random Walk Through Fractal Dimensions, VCH Publishers, New York 1994.Google Scholar
6. Hornbogen., E. Trans. ASM, 1961,53, 569.Google Scholar
7. Underwood., E. and Banerji., K., Mater. Sci. Eng. 80 (1986) 1.Google Scholar
8. Mitchell, M. and Bonell, D.. J. Mater. Res., 5, No 10, Oct 1990. 2244.Google Scholar
9. Richards, and Dempsey, . Scripta Metallurgica 22, 1988, p. 687.Google Scholar
10. H.J., Gao. et al. J. Mater. Res., 9, No. 9, sep 1994, 2216.Google Scholar
11. B.B., Mandelbrot, Passoja, D.E. and A., Paullay J. Nature 1984, 308, 721.Google Scholar
12. Tsuda, et al. J.of the Society of Materials Science, Japan/Zayro, 40, No. 455 Aug 1991 p.1066.Google Scholar
13. Hinojosa, M., Rodríguez, R. and Ortiz, U., MRS Symposium Proceedings vol.367 “Fractal Aspects of Materials”. Materials Research Society.Pittsburgh, 1995. p. 125.Google Scholar
14. Hinojosa, M., doctoral work, Facultad de Ingeniería Mecánica y Elétrica, Universidad Autó;noma de Nuevo León, 1995.Google Scholar
15. Mandelbrot, B.B., Science 1967, 156, 636.Google Scholar