Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:39:07.979Z Has data issue: false hasContentIssue false

Formation Of Stacking Fault Tetrahedra During Epitaxial Growth of Silicon and Germanium-Silicon Layers on {111} Silicon Substrates

Published online by Cambridge University Press:  26 February 2011

D. Brasen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
S. Nakahara
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

Transmission electron microscopy was used to characterize defects formed in silicon (Si) and germanium-silicon (Ge-Si) alloy layers grown sequentially by molecular-beam epitaxy (MBE) on {111} Si substrates. Stacking fault tetrahedra (SFT) were found to form in these epitaxial layers. In addition, the apex of the SFT are seen to be pointing down toward the Si substrate, with most of the SFT tips converging exactly at the Si/Si and the Ge-Si/Si interfaces. Diffraction contrast experiments using various two-beam conditions have shown that the stacking faults bounding the SFT are of intrinsic (vacancy) type. In the case of a Si layer on the Si substrate, it is reasoned that the SFT are caused by impurities on the surface of the Si substrate prior to deposition. However, in the Ge-Si layer, it is believed that the formation of the S FT is due to local stresses caused by the structural ordering/phase separation of the Ge atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Appl. Phys. Lett. 44, 102 (1984).Google Scholar
[2] Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).Google Scholar
[3] People, R., Bean, J. C., and Lang, D. V., J. Vac. Sci. Techn. A3, 846 (1985).Google Scholar
[4] Booker, G. R. and Stickler, R., J. Appl. Phys. 33, 3281 (1962).Google Scholar
[5] Finch, R. H., Queisser, H. J., Thomas, G., and Washburn, J., J. Appl. Phys. 34, 406 (1963).Google Scholar
[6] Jaccodine, R. J., Appl. Phys. Lett. 2, 201 (1963).Google Scholar
[7] Mendelson, S., J. Appl. Phys. 35, 1570 (1964).Google Scholar
[8] Booker, G. R., Discuss. Faraday Soc. 38, 298 (1964).Google Scholar
[9] Mendelson, S., Surf. Sci. 6, 233 (1967).Google Scholar
[10] Thomas, R. N. and Francombe, M. H., Surf. Sci. 25, 357 (1971).Google Scholar
[11] Ravi, K. V., J. Appl. Phys. 43, 1785 (1972).Google Scholar
[12] Ogden, R., Bradley, R. R., and Watts, B. E., phys. stat. sol. (a) 26, 135 (1974).Google Scholar
[13] Kitajima, H., Ishitani, A., Endo, N., and Tanno, K., Jap. J. Appl. Phys. 22, L783 (1983).Google Scholar
[14] Booker, G. R. and Stickler, R., Appl. Phys. Lett. 3, 158 (1963).Google Scholar
[15] Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials, John Wiley & Sons, New York (1979) p. 162.Google Scholar
[16] Silcox, J. and Hirsch, P. B., Phil. Mag. 4, 72 (1959).Google Scholar
[17] Hull, R., Bean, J. C., Gibson, J. M., Joy, D. C., and Twigg, M. E., To be published.Google Scholar
[18] Mahajan, S., Rozgonyi, G. A., and Brasen, D., Appl. Phys. Lett. 30, 73 (1977).Google Scholar
[19] Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765(1985).Google Scholar