Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:26:58.977Z Has data issue: false hasContentIssue false

Formation of Long Wavelength InP Laser MESAS

Published online by Cambridge University Press:  22 February 2011

F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. Tseng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. Constantine
Affiliation:
Plasma Therm IP, St. Petersburg, FL 33716
Get access

Abstract

Narrow (1 μm), deep (3.5 μm) laser mesas have been formed on 2”φ InP wafers using stepper lithography and dry etching techniques for both dielectric and semiconductor patterning. Contrast enhancement techniques produce excellent edge acuity and vertical sidewalls on the initial photoresist lines. Pattern transfer to the underlying SiO2 regrowth mask is achieved by ECR SF6/Ar dry etching at 1 mTorr and –100V, conditions which also retain the verticality of the mesa. The semiconductor is etched using an ECR Cl2/CH4/H2/Ar discharge at 0.3 mTorr and –80V, with the sample held at ∼ 150°C. The etch rate under these conditions is ∼1 μm/min, with a selectivity of ≥10:1 for the semiconductor over the dielectric mask. The smooth etched surface and low degree of damage make this process ideal for epitaxial regrowth. The uniformity of each process step is also acceptable (≤7%). Comparison of the elevated temperature Cl2/CH4/H2/Ar mixture with the more conventional room temperature CH4/H2 plasma chemistry will be given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example the review articles in the AT&T Technical Journal, 68 No. 1 (1989).Google Scholar
2. Katz, A., Pearton, S. J. and Geva, M., Appl. Phys. Lett. 59 286 (1991).Google Scholar
3. Nordell, N., Borglind, J., Kjeboin, C. and Lourdudoss, S., Electron. Lett. 27 926 (1991).Google Scholar
4. Hayes, T. R., Byrne, E. R., Zilko, J. L., Dreisbach, M. A., McCrary, V. R., Haren, D. Van, Dautremont-Smith, W. C., Napholtz, S. G. and Strege, K. E. (unpublished, 1989).Google Scholar
5. Nordell, N. and Borglind, J., Appl. Phys. Lett. 61 22 (1992).Google Scholar
6. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S. and Kinsella, A. D., J. Vac. Sci. Technol. B8 596 (1990).Google Scholar
7. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69 4206 (1991).Google Scholar
8. Niggebrugge, U., Klug, M. and Garus, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar