Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T03:11:35.619Z Has data issue: false hasContentIssue false

Formation of Highly Porous Gas-sensing Films by In-situ Thermophoretic Deposition of Nanoparticles from Aerosol Phase

Published online by Cambridge University Press:  01 February 2011

Thorsten Sahm
Affiliation:
[email protected] of TuebingenInstitute of Physical ChemistryTuebingen N/AGermany
Weizhi Rong
Affiliation:
[email protected], University of California, Department of Chemical and Biomolecular Engineering, Los Angeles, California, CA 90095-1592, United States
Nicolae Barsan
Affiliation:
[email protected], University of Tuebingen, Institute of Physical Chemistry, Tuebingen, N/A, N/A, Germany
Lutz Mädler
Affiliation:
[email protected], University of California, Department of Chemical and Biomolecular Engineering, Los Angeles, California, CA 90095-1592, United States
Sheldon K. Friedlander
Affiliation:
[email protected], University of California, Department of Chemical and Biomolecular Engineering, Los Angeles, California, CA 90095-1592, United States
Udo Weimar
Affiliation:
[email protected], University of Tuebingen, Institute of Physical Chemistry, Tuebingen, N/A, N/A, Germany
Get access

Abstract

Gas sensors based on tin dioxide nanoparticles show high sensitivity to reducing and oxidizing gases. Dry aerosol synthesis applying the flame spray pyrolysis was used for manufacture and directly (in-situ) deposit nanoparticles on sensor substrates. For the first time this technique has been used to synthesize a combination of two stacked porous layers for gas sensor fabrication. Compared to state-of-the-art techniques, aerosol technology provides a direct and versatile method to produce homogeneous nanoparticle films. Two different sensing layers were deposited directly on interdigital ceramic substrates. These porous bottom layers consisted either of pure tin dioxide or palladium doped tin dioxide. The top layer was a palladium doped alumina nanoparticle film which served as a chemical filter. The fabricated gas sensors were tested with methane, CO and ethanol. In case of CH4 detection, the pure tin dioxide sensor with the Pd/Al2O3 filter layer showed higher sensor signals and significantly improved analyte selectivity with respect to water vapor compared to single tin dioxide films. At temperatures up to 250°C the Pd-doping of the tin dioxide strongly increased the sensitivity to all gases. At higher temperatures the sensor signal significantly decreased for the Pd/SnO2 sensor with a Pd/Al2O3 filter on top indicating high catalytic activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Heiland, G., Fur, Z. Physik 148 (1), 15 (1957).Google Scholar
2 Bielanski, A., Deren, J., and Haber, J., Nature 179 (4561), 668 (1957).Google Scholar
3 Seiyama, T., Kato, A. and Fujiishi, K., Analytical Chemistry 34 (11), 1502 (1962).Google Scholar
4 Taguchi, N., U.S. Patent No. 3,631,436 (1971).Google Scholar
5 Goepel, W., Hesse, J., and Zemel, J. N., Sensors: A Comprehensice Survey. (VCH, New York, 1995).Google Scholar
6 Moseley, P. T. and Tofield, B. C., Solid State Gas Sensors. (Hilger, Bristol/Philadelphia, 1987).Google Scholar
7 Sberveglieri, G., Gas Sensors: Principles, Operation, and Developments. (Kluwer, Boston, 1992).Google Scholar
8 Barsan, N., Schweizer-Berberich, M., and Gopel Fresenius, W., Journal of Analytical Chemistry 365 (4), 287 (1999).Google Scholar
9 Simon, I., Barsan, N., Bauer, M. and Weimar, U., Sensors and Actuators, B: Chemical 73 (1), 1 (2001).Google Scholar
10 Barsan, N. and Weimar, U., Journal of Physics-Condensed Matter 15 (20), R813 (2003).Google Scholar
11 Pijolat, C., Viricelle, J. P., Tournier, G. and Montmeat, P., Thin Solid Films 490 (1), 7 (2005).Google Scholar
12 Kwon, C. H., Yun, D. H., Hong, H. K., Kim, S.-R., Lee, K., Lim, H. Y. and Yoon, K. H., Sensors and Actuators, B: Chemical 65 (1-3), 327 (2000).Google Scholar
13 Tournier, G. and Pijolat, C., Sensors and Actuators, B: Chemical 106 (2), 553 (2005).Google Scholar
14 Cabot, A., Arbiol, J., Cornet, A., Morante, J. R., Chen, F. and Liu, M., Thin Solid Films 436 (1), 64 (2003).Google Scholar
15 Hugon, O., Sauvan, M., Benech, P., Pijolat, C. and Lefebvre, F., Sensors and Actuators, B: Chemical 67 (3), 235 (2000).Google Scholar
16 Schweizer-Berberich, M., Strathmann, S., Gopel, W., Shrama, R. and Peyre-Lavigne, A., Sensors and Actuators, B: Chemical 66 (1-3), 34 (2000).Google Scholar
17 Fleischer, M., Kornely, S., Weh, T., Frank, J. and Meixner, H., Sensors and Actuators, B: Chemical 69 (1-2), 205 (2000).Google Scholar
18 Hubalek, J., Malysz, K., Prasek, J., Vilanova, X., Ivanov, P., Llobet, E., Brezmes, J., Correig, X. and rak, Z. Sve, Sensors and Actuators, B: Chemical 101 (3), 277 (2004).Google Scholar
19 Papadopoulos, C. A., Vlachos, D. S., and Avaritsiotis, J. N., Sensors and Actuators, B: Chemical 32 (1), 61 (1996).Google Scholar
20 Tabata, S., Higaki, K., Ohnishi, H., Suzuki, T., Kunihara, K. and Kobayashi, M., Sensors and Actuators, B: Chemical 109 (2), 190 (2005).Google Scholar
21 Menil, F., Lucat, C., and Debeda, H., Sensors and Actuators, B: Chemical 25 (1-3), 415 (1995).Google Scholar
22 Mandayo, G. G., Castano, E., Gracia, F. J., Cirera, A., Cornet, A., Morante, J. R., Sensors and Actuators, B: Chemical 87 (1), 88 (2002).Google Scholar
23 Sberveglieri, G., Sensors and Actuators, B: Chemical 6 (1-3), 239 (1992).Google Scholar
24 Wollenstein, J., Bottner, H., Jaegle, M., Becker, W. J. and Wagner, E., Sensors and Actuators, B: Chemical 70 (1-3), 196 (2000).Google Scholar
25 Nayral, C., Viala, E., Fau, P., Senocq, F., Jumas, J.-C., Maisonnat, A. and Chaudret, B., Chemistry-a European Journal 6 (22), 4082 (2000).Google Scholar
26 Baik, N. S., Sakai, G., Miura, N. and Yamazoe, N., Sensors and Actuators, B: Chemical 63 (1-2), 74 (2000).Google Scholar
27 Barsan, N. and Weimar, U., Journal of Electroceramics 7 (3), 143 (2001).Google Scholar
28 Sahm, T., Mädler, L., Gurlo, A., Barsan, N., Pratsinis, S. E. and Weimar, U., Sensors and Actuators, B: Chemical 98 (2-3), 148 (2004).Google Scholar
29 Mädler, L., Roessler, A., Pratsinis, S.E., Sahm, T., Gurlo, A., Barsan, N. and Weimar, U., Sensors and Actuators, B: Chemical 114 (1), 283 (2006).Google Scholar
30 Mädler, L. and Pratsinis, S. E., Journal of the American Ceramic Society 85 (7), 1713 (2002).Google Scholar
31 Mädler, L., Kammler, H. K., Mueller, R. and Pratsinis, S. E., Journal of Aerosol Science 33 (2), 369 (2002).Google Scholar
32 Kappler, J., Characterization of high-performance SnO2 gas sensors for CO detection by in-situ techniques. (Shaker Verlag, Aachen, 2001).Google Scholar
33 Strobel, R., Krumeich, F., Stark, W. J., Pratsinis, S. E. and Baiker, A., Journal of Catalysis 222 (2), 307 (2004).Google Scholar
34 Gelin, P. and Primet, M., Applied Catalysis, B: Environmental 39 (1), 1 (2002).Google Scholar
35 Ciuparu, D., Lyubovsky, M. R., Altman, E., Pfefferle, L. D. and Datye, A., Catalysis Reviews – Science and Engineering 44 (4), 593 (2002).Google Scholar
36 Demoulin, O., Navez, M., and Ruiz, P., Applied Catalysis, A: General 295 (1), 59 (2005).Google Scholar