Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:41:27.109Z Has data issue: false hasContentIssue false

Formation of Gallium Nitride (GaN) Transition Layer by Plasma Immersion Ion Implantation and Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

D. T. K. Kwok
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
A. H. P. Ho
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
X. C. Zeng
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
C. Chan
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
P. K. Chu
Affiliation:
Department of Physics & Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
S. P. Wong
Affiliation:
Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
Get access

Abstract

Recent advances in the preparation of gallium nitride (GaN) and related compounds have made possible the production of blue semiconductor laser. Conventional preparation involves growing GaN thin films on lattice-mismatching sapphire using metal-organic chemical vapor deposition (MOCVD). In this article, we describe an alternative method to produce a lattice-matching strained layer in GaAs for subsequent GaN growth by plasma immersion ion implantation (PIII) followed by rapid thermal annealing. Our novel approach uses broad ion impact energy distribution and multiple implant voltages to form a spread-out nitrogen depth profile and an amorphous surface layer. This approach circumvents the retained dose and low nitrogen content problems associated with ion beam implantation at fix energy. Based on our Raman study, the resulting structure after PIII and rapid thermal annealing is strained and contains some GaN possibly in crystal form

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S. and Fasol, G., in The Blue Laser Diode, Springer-Verlag, Berlin, 1997.Google Scholar
2 Gokhale, M. R., Wei, J., Studenkov, P. V., Wang, H., and Forrest, S. R., IEEE Photonics Technology Letters, 11, p. 952 (1999).Google Scholar
3 Delouise, L. A., J. Vac. Sci. Technol. A, 11, p. 609 (1993).Google Scholar
4 Lin, X. W., Behar, M., Maltez, R., Swider, W., Liliental-Weber, Z., and Washburn, J., Appl. Phys. Lett., 67, p. 2,699 (1995).Google Scholar
5 Kuriyama, K., Tsunoda, T., Hayashi, N., and Takahashi, Y., Nucl. Instrum. Meth. Phys. Res. B, 148, p. 432 (1999).Google Scholar
6 Silva, S. R. P., Almeida, S. A., and Sealy, B. J., Nucl. Instrum. Meth. Phys. Res. B, 147, p. 388 (1999).Google Scholar
7 Barradas, N. P., Almeida, S. A., Jeynes, C., Knights, A. P., Silva, S. R. P., and Sealy, B. J., Nucl. Instrum. Meth. Phys. Res. B, 148, p. 463 (1999).Google Scholar
8 Stumm, P. and Drabold, D. A., Phys. Rev. Lett., 79, p. 677 (1997).Google Scholar
9 Chu, P. K., Qin, S., Chan, C., Cheung, N. W., and Larson, L. A., Mat. Sci. Eng. Reports, R17(6-7), p. 207 (1996).Google Scholar
10 Ziegler, J. F., Biersack, J. P. and Littmark, U., in “The stopping and Range of Ions in Solids,” Pergamon Press, New York, 1985.Google Scholar
11 Mintairov, A. M., Blagnov, P. A., Melehin, V. G., Faleev, N. N., Merz, J. L., Qiu, Y., Nikishin, S. A., and Temkin, H., Phys. Rev. B, 56, p. 836 (1997).Google Scholar