Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:27:19.819Z Has data issue: false hasContentIssue false

Formation of CoSi2 Wires by Maskless Implantation with the Focused Ion Beam

Published online by Cambridge University Press:  03 September 2012

J. Teichert
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Material Research, P.O. Box 510119, D–01314 Dresden, Germany
L. Bischoff
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Material Research, P.O. Box 510119, D–01314 Dresden, Germany
E. Hesse
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Material Research, P.O. Box 510119, D–01314 Dresden, Germany
D. Panknin
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Material Research, P.O. Box 510119, D–01314 Dresden, Germany
W. Skorupa
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Material Research, P.O. Box 510119, D–01314 Dresden, Germany
Get access

Abstract

The maskless ion implantation with the focused ion beam as a new method for ion beam synthesis of cobalt sulicide wires is presented. In order to perform the implantation a special achromatic mass separator was implemented into the ion column, liquid alloy ion sources for cobalt ions were developed and a substrate heating was built. Ion implantation was performed with 30 keV Co+ and 60 keV Co++ ions. The dose dependence for room temperature implantation and the influence of the substrate temperature were investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. White, A.E., Short, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., AppI. Phys. Lett. 50, 95 (1987).Google Scholar
2. White, A.E., Short, K.T., Dynes, R.C., Gibson, J.M. and Hull, R., Mat. Res. Soc. Symp. Proc. 100, 3 (1988).CrossRefGoogle Scholar
3. Kohlhof, K., MantI, S., Jager, W. and Stritzker, B., Appl. Surf. Sci. 38, 207 (1989).Google Scholar
4. Radermacher, K., Mantl, S., Kohlhof, K. and Jager, W., J. Appl. Phys. 68, 3001 (1990).CrossRefGoogle Scholar
5. Zimmermann, N.M., Liddle, J.A., White, A.E. and Short, K.T., AppI. Phys. Lett. 62, 387 (1993).Google Scholar
6. Bischoff, L., Hesse, E., Janssen, D., Naehring, F.K., Notzold, F., Schmidt, G. and J. Teichert, Microelectronic Engineering 13, 637 (1991).Google Scholar
7. Bischoff, L., Hesse, E., Hofmann, G., Naehring, F.K., Probst, W., Schmidt, B. and Teichert, J., Microelectronic Engineering 21, 197 (1993).Google Scholar
8. Teichert, J. and Tiunov, M.A., Meas. Sci. Technol. 4, 754 (1993).Google Scholar
9. Hesse, E., Bischoff, L. and Teichert, J., submitted to J. Phys. DGoogle Scholar
10. Melngailis, J., J. Vac. Sci. Technol. B 5, 469 (1987).Google Scholar
11. Bamba, Y., Miyauchi, E., Arimoto, H., Kuramoto, K., Tahamori, A., Hashimoto, H. and Utsumi, T., Jap. J. AppI. Phys. 22, L650 (1983).CrossRefGoogle Scholar
12. Bamba, Y., Miyauchi, E., Arimoto, H., Tahamori, A. and Hashimoto, H., Jap. J. AppI. Phys. 23, L515 (1984).Google Scholar