Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:49:55.527Z Has data issue: false hasContentIssue false

Formation of BaMgF4 Films on Pt/MgO, Si and GaAs Substrates

Published online by Cambridge University Press:  21 February 2011

Kouji Aizawa
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 227, Japan
Tatsuya Ichiki
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 227, Japan
Hiroshi Ishiwara
Affiliation:
Precision & Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 227, Japan
Get access

Abstract

Crystalline quality of BaMgF4 films grown on Pt/MgO, Si, and GaAs substrates either by solid phase crystallization (SPC) or by molecular beam epitaxy (MBE) has been investigated. In the SPC method, the films are deposited typically at 300°C in amorphous state and subsequently crystallized at temperatures higher than 500°C. It has been found from X-ray diffraction analysis that (010)-oriented films are grown on the three substrates by the SPC method, while that (011)- and (120)-oriented films are grown on respective (100)- and (111)-oriented substrates of Si and GaAs, when the MBE method is used at substrate temperatures around 500°C. These results show that the spontaneous polarization which is generated along a-axis of a BaMgF4 crystal, is not parallel to the film surface, only when the films are grown on (111) substrates by MBE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, S.Y., IEEE Trans. Electron Devices ED–21, 499(1974).Google Scholar
2. Wu, S.Y., Ferroelectrics 11, 379(1976).CrossRefGoogle Scholar
3. Sugibuchi, K., Kurogi, Y., and Endo, N., J. Appl. Phys. 40, 2871(1975).Google Scholar
4. Higuma, Y., Matsui, Y., Okuyama, M., Nakagawa, T., and Hamakawa, Y., Jpn. J. Appl. Phys. 17–1, 209(1977).Google Scholar
5. Tolstousov, S.V., Mukhortov, V., Mukhortov, V., Dudkevich, V., and Fesenko, E., Ferroelectrics Lett. 1, 51(1983).Google Scholar
6. Rost, T.A., Lin, H., and Rabsom, T.A., Appl. Phys. Lett. 59, 3654(1991).CrossRefGoogle Scholar
7. Ishiwara, H., Jpn. J. Appl. Phys. 32, 442(1993).Google Scholar
8. Cho, C.-C., Kim, T.S., Gnade, B.E., Liu, H.Y., and Nishioka, Y., Appl. Phys. Lett. 60, 338(1992).CrossRefGoogle Scholar
9. Waho, T. and Saeki, H., Jpn. J. Appl. Phys. 30, 221(1991).Google Scholar
10. Ricard, H., Aizawa, K., and Ishiwara, H., Appl. Surf. Sci. 56–58, 888(1992).Google Scholar
11. Eibschutz, M., Guggenheim, H.J., Wemple, S.H., Camlibel, I., and DiDomenico, M. Jr., Phys. Lett. 29A, 409(1969).CrossRefGoogle Scholar
12. Sinharoy, S., Buhay, H., Francombe, M.H., Takei, W.J., Doyle, N.J., and Rieger, J.H., J. Vac. Soc. Technol. A9, 409(1991).Google Scholar
13. Sinharoy, S., Buhay, H., Burke, M.G., Lampe, D.R., and Pollak, T.M., IEEE Trans. Ultrason. Ferroelectr. & Freq. Control 38, 663(1991).Google Scholar
14. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666(1986).Google Scholar
15. Fan, J., Oigawa, H., and Nannichi, Y., Jpn. J. Appl. Phys. 27, L1331(1988).CrossRefGoogle Scholar
16. Aizawa, K. and Ishiwara, H., Jpn. J. Appl. Phys. 31, 3232(1992).Google Scholar