Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:13:45.212Z Has data issue: false hasContentIssue false

Formation of β-and α-FeSi2 Films on (100) Silicon using Fe-Si and Fe-Ti-Si Diffusion Couples

Published online by Cambridge University Press:  03 September 2012

K. Kyllesbech Larsen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
A. Lauwers
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Van Rossum
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

An investigation of the influence of an intermediate titanium thin film on the silicidation reaction between an overlying iron film and the (100)-oriented silicon substrate is presented. The Fe-Ti bilayers were obtained by consecutive sputtering of a Ti layer and an Fe layer on Si substrates. In addition, single iron layers were made by sputtering for comparison with the bilayers. By subsequent rapid-thermnal processing (RTP), depending on the annealing conditions, both the semiconducting β- and the metallic α-FeSi2 thin films could be formed. The phase formation has been investigated as a function of the thickness of the titanium layer, the annealing time and temperature. In this paper the first results on iron disilicide formation through Fe-Ti-Si diffusion couples are shown. Characterisation of the FeSi2 layers using Rutherford backscattering spectrometry (RBS), channelling RBS, X-ray diffraction (XRD), sheet resistivity measurements will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Derrien, J., Chevrier, J., Thanh, V. Le, and Mahan, J.E., Appl. Surf. Sci. 56–58, 382 (1992).CrossRefGoogle Scholar
[2] Lefki, K., Muret, P., Cherief, N., and Cindi, R.C., J. Appl. Phys. 69, 352 (1991).Google Scholar
[3] Dimitriades, C.A., Werner, J.H., Logothedidis, S., Stutzmann, M., Weber, J., and Nesper, R., J. Appl. Phys. 68, 1726 (1990).Google Scholar
[4] Christensen, N.E., Phys. rev. B42, 7148 (1990).CrossRefGoogle Scholar
[5] Hsia, S.L., Tan, T.Y., Smith, P., and McGuire, G.E., J. AppI. Phys, 70, 7579 (1991); J. Appl. Phys. 72, 1864 (1992).Google Scholar
[6] Cheng, H.C., Yew, T.R., and Chen, L.J., AppI. Phys. Lett. 47, 128 (1985).CrossRefGoogle Scholar
[7] Massalski, T.B., Binary Alloy Phase Diagram, ( American Society for Metals, Metal Park, OH, 1986), 1108.Google Scholar
[8] Regolini, J.L., Trincat, F., Berbezier, I., and Shapira, Y., AppI. Phys. Lett. 60, 956 (1992).Google Scholar
[9] Maex, K., Lauwers, A., Hove, M. Van, Vandervorst, W., and Rossum, M. Van, Mater. Res. Soc. Symp. Proc. 279, 869 (1993).CrossRefGoogle Scholar
[10] Hirano, T., and Kaise, M., J. Appl. Phys. 68, 627 (1990).CrossRefGoogle Scholar
[11] Cheng, H.C., Yew, T.R., and Chen, L.J., J. Appi. Phys. 57, 5246 (1985).Google Scholar
[12] Mahan, J.E., Geib, K.M., Robinson, G.Y., Long, R.G., Xinghua, Y., Bai, G., Nicolet, M.-A., and Nathan, M., Appl. Phys. Lett. 56, 2126 (1990).Google Scholar