Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:51:13.699Z Has data issue: false hasContentIssue false

Formation of a Thermally Stable NiSi FUSI Gate Electrode by a Novel Integration Process

Published online by Cambridge University Press:  01 February 2011

Shiang Yu Tan
Affiliation:
[email protected], Chinese Culture University, Department of Electrical Engineering, Department of Electrical Engineering, Chinese Culture University, Taipei 111, Taiwan, ROC, Taipei, 111, Taiwan, +886 972172847, +886 2 28625230
Hsien-Chia Chiu
Affiliation:
Chinese Culture University, Graduate Institute of Materials Science and Nanotechnology, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan
Chun-Yen Hu
Affiliation:
Chinese Culture University, Graduate Institute of Materials Science and Nanotechnology, 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, 11114, Taiwan
Get access

Abstract

Nickel silicide is promising to be the choice material as contact to the source, drain, and gate for sub-65 nm and 45 nm CMOS devices. However, the thermal stability of NiSi is worse as the high resistivity phase of NiSi2 nucleates at about 750 °C and film agglomeration occurs even at a temperature as low as 600 °C. The process integration issues and formation thermally stable NiSi are needed to be understood and addressed. In order to obtain a thermally stable Ni-FUSI gate electrode, we introduced a novel integration process by using a two-step anneal process associating with properly tuned thickness of the initial Ni film and implant BF2 atoms during the poly-gate formation. As results, push the transformation of NiSi2 to a higher temperatures at about 900 °C. Several measurement techniques such as XRD, TEM, SEM and Resistivity are carried out to demonstrate its physical and electrical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors, 2005.Google Scholar
2. Hobbs, C. et al., VLSI Symp. Tech. Dig., p. 9 (2003).Google Scholar
3. Shiraishi, K. et al., VLSI Symp. Tech. Dig., p. 108 (2004).Google Scholar
4. Iwai, H., Ohgura, T., Ohmi, S., Microelectron. Eng. 60 (2002) 157.Google Scholar
5. Hokazono, A., Ohuchi, K., Takayanagi, M., Watanabe, Y., Magoshi, S., Kato, Y., Shimizu, T., et al., IEDM Tech. Dig. (2002) 639.Google Scholar
6. Lu, J.P., Miles, D., Zhao, J., Gurba, A., Xu, Y., Lin, C., Hewson, M., et al., IEDM Tech. Dig. (2002) 371.Google Scholar
7. Lauwers, A., Steegen, A., de potter, M., Lindsay, R., Satta, A., Bender, H., Maex, K., J. Vac. Sci. Technol. B, 19 (2001) 2026.Google Scholar
8. Lauwers, A., de Potter, M., Chamirian, O., Lindsay, R., Demeurisse, C., Vrancken, C., Maex, K., Microelectron. Eng. 64 (2002) 131.Google Scholar
9. Pey, K.L, Lee, P.S., Mangelinck, D., Thin Solid Films 462–463 (2004) 137.Google Scholar
10. Wang, A.S., Chi, D.Z., Loomans, M., Ma, D., Lai, M.Y., Tjiu, W.C., Chua, S.J., Appl. Phys. Lett. 81 (2002) 5138.Google Scholar
11. Heurle, F., Petersson, C.S., Baglin, J.E.E., Placa, S.J., Wong, C.Y., J. Appl. Phys. 55 (1984) 4208.Google Scholar
12. Kittl, J.A., Lauwers, A., Chamirian, O., Pawlak, M.A., Van Dal, M., Akheyar, A., De Potter, M., Kottantharayil, A., Pourtois, G., Lindsay, R., Maex, K., Mater. Res. Soc., Symp. Proc. 810 (2004) 31.Google Scholar
13. Lavoie, C., d'Heurle, F.M., Detavernier, C., C. Cabral Jr., Microelectron. Eng. 70 (2003) 144.Google Scholar
14. Kittl, J.A., Lauwers, A., Pawlak, M.A., Van Dal, M., Veloso, A., Anil, K.G., Pourtois, G., Demeurisse, C., Schram, T., Brijs, B., De Potter, M., Vrancken, C., Maex, K., Microelectron. Eng. 82 (2005) 441.Google Scholar