Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:50:45.085Z Has data issue: false hasContentIssue false

Formation and Structure of Thin Mo Layers and Mo-Ni Multilayers on Ni(001) by Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

Y.H. Lee
Affiliation:
North Carolina State University, Dept. of Materials Science and Engineering, Raleigh, NC 27695-7907
R.P. Burns
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194 North Carolina State University, Dept. of Physics, Raleigh, NC 27695-8202
J.B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709-2194
K.J. Bachmann
Affiliation:
North Carolina State University, Dept. of Materials Science and Engineering, Raleigh, NC 27695-7907
Get access

Abstract

The growth of Mo overtayers and Mo-Ni multilayers on single crystal Ni(001) substrates is described. The nucleation and growth processes of these thin films were analyzed by LEED, XPS, AES and SEM and High Resolution AES investigations without breaking vacuum. Growth of Mo-Ni multilayer heterostructures on Ni(001) with ≈20Å periodicity is possible at low temperature (≈200 °C). At high temperature (≈550 °C) the growth proceeds by the Volmer-Weber mechanism preventing the deposition of small period multilayers. Annealing experiments on ultra-thin (<20Å) Mo overiayers deposited at 200 °C show an onset of interdiffusion at ≈ 550°C coupled to the generation of a new surface periodicity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Matsumoto, S., Sato, Y., Tsutsami, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).Google Scholar
2Lee, Y. H., Richard, P. D., Bachmann, K. J., and Glass, J. T., Appl. Phys. Lett., in press.Google Scholar
3Lee, Y. H., Ma, G.-H., Bachmann, K. J., and Glass, J. T., submitted to the Proc. Diamond. Boron Nitride. Silicon Carbide and Related Wide Bandgap semiconductors at the 1989 MRS Fall Meeting, Boston, Massachusetts, 1989.Google Scholar
4Lee, Y. H., Bachmann, K. J., Glass, J. T., Legrice, Y. M., and Nemanich, R. J., submitted to Appl. Phys. Lett.Google Scholar
5Ploog, K., in The Techonology and Phvsics of Molecular Beam Epitaxy, edited by Parker, E. H. C. (Plenum, New York, 1985), Chapter 18.Google Scholar
6Hilard, J. E., in Modulated Structures -1979. Proceedings of The International Conference on Modulated Structures, edited by Cowley, J. M., Cohen, J. B., Salamon, M. B., and Wuensch, B. J. (AIP, New York, 1979), p.407.Google Scholar
7Durbin, S. M., Cunningham, J. E., Mochel, M. E., and Flynn, C. P., J. Phys. F11, L223 (1981).Google Scholar
8Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
9Shunk, F. A., Constitution of Binary Alloys. Second Supplement (McGraw-Hill. New York, 1969)p.515.Google Scholar
10Bauer, E., Poppa, H., Todd, G., and Davis, P. R., J. Appl. Phys. 48, 3773 (1977).Google Scholar
11Venables, J. A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 399 (1984).Google Scholar
12Somerjai, G., Chemistry in Two Dimensions : Surfaces (Cornell University Press, Ithaca, New York, 1981).Google Scholar
13Brady, T. E. and Hovland, C. T., J. Vac. Sci. Technol. 18, 339 (1981).Google Scholar
14Venables, J. A., Spiller, G. D. T., and Hanbucken, M., Rep. Prog. Phys. 47, 429 (1984).Google Scholar
15Hondros, E. D. in Precipitation Processes in Solid, edited by Russell, K. C., Aaronson, H. I. (Proc. TMS-AIME Heat Treatment Committe at the 1976 TMS Fall Meeting, Niagara Falls, New York, September, 1976) p.1.Google Scholar