Article contents
Formation and Characterization of Oxides on GaN surfaces
Published online by Cambridge University Press: 15 March 2011
Abstract
We characterized oxides formed directly on n-GaN surfaces. The methods used for oxide layer formation were both photoanodic oxidation and thermal oxidation. The photoanodic oxidation took place in aqueous solutions of potassium hydroxide with pH values lower than 13. Homogenous oxide films were obtained in the voltage range from -0.6 V to 0.4 V vs the saturated calomel electrode (SCE). The characterization of the oxide layers was performed primarily by Auger electron spectroscopy (AES). First the surface chemistry was determined, proving that Ga-oxide is formed with an attributed stoichiometry of Ga2O3. Secondly, depth profiling shows the oxide thickness to be dependent on the photoanodic voltage and oxidation time. Complementary X-ray diffraction (XRD) studies suggest an amorphous state of the formed layers. Annealing GaN in O2-atmospheres above 900°C also lead to surfaces fully covered with gallium oxide. We found that N-polar surfaces oxidize faster than Ga-polar surfaces, which is in agreement to the theoretical work of Zywietz et al [1]. Furthermore, we report on the electrical properties of the anodized oxide layers by analyzing MOS structures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
REFERENCES
- 8
- Cited by