Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:00:31.942Z Has data issue: false hasContentIssue false

Fluorescence line Narrowing Spectroscopy of Germanate Glasses Doped with Eu3+

Published online by Cambridge University Press:  10 February 2011

R. Rolli
Affiliation:
Dip. di Fisica “A. Volta”, Università di Pavia and INFM, via Bassi 6, 27100 Pavia, Italy
G. Samoggia
Affiliation:
Dip. di Fisica “A. Volta”, Università di Pavia and INFM, via Bassi 6, 27100 Pavia, Italy
A. Speghini
Affiliation:
Dip. Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
M. Bettinelli*
Affiliation:
Dip. Scientifico e Tecnologico, Università di Verona, Strada Le Grazie, 37134 Verona, Italy
M. Montagna
Affiliation:
INFM, Dip. Fisica, Università di Trento, via Sommarive 14, 38050 Povo-Trento, Italy
M. Ferrari
Affiliation:
CNR-CeFSA, Centro Fisica Stati Aggregati, via Sommarive 14, 38050 Povo-Trento, Italy
*
Corresponding author: [email protected]
Get access

Abstract

In the present paper we report on time-resolved resonant and non-resonant fluorescence line narrowing measurements on a lead germanate glass doped with Eu3+. Site-selective decay curves were measured at low temperature. The results show that energy transfer processes between Eu3+, ions in different sites are not efficient at the doping level under investigation (I mol% Eu2O3). The homogeneous linewidth of the 5D0→47F0transition was measured at room temperature as a function of the excitation energy within the inhomogeneous profile. The linear dependence of the homogeneous linewidth on the excitation energy is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wachtler, M., Speghini, A., Pigorini, S., Rolli, R. and Bettinelli, M., J. Non-Cryst. Solids 217, 111 (1997).Google Scholar
2. Rolli, R., Camagni, P., Samoggia, G., Speghini, A., Wachtler, M. and Bettinelli, M., Spectrochim. Acta Part A 54, 2157 (1998).Google Scholar
3. Rolli, R., PhD thesis, University of Pavia (Italy), 1999.Google Scholar
4. Wachtler, M., Speghini, A., Gatterer, K., Fritzer, H. P., Ajò, D. and Bettinelli, M., J. Am. Ceram. Soc. 81, 2045 (1998).Google Scholar
5. Cern Program Library, D506, 1994.Google Scholar
6. Kushida, T. and Takushi, E., Phys. Rev. B 12, 824 (1975).Google Scholar
7. Huber, D. L., Phys. Rev. B 31, 6070 (1985).Google Scholar
8. Huber, D. L., Phys. Rev. E 53, 6544 (1996).Google Scholar
9. Todoroki, S., Hirao, K. and Soga, N., J. Appl. Phys. 72, 5853 (1992).Google Scholar
10. Weber, M. J., J. Non-Cryst. Solids 123, 208 (1990).Google Scholar
11. Macfarlane, R. M. and Shelby, R.M., J. Lumin. 36, 179 (1987).Google Scholar
12. Avouris, P., Campion, A. and EI-Sayed, M. A., J. Chem. Phys. 67, 3397 (1977).Google Scholar
13. Morgan, J. R., Chock, E. P., Hopewell, W. D., EI-Sayed, M. A. and Orbach, R., J. Phys. Chem. 85, 747 (1981).Google Scholar
14. Brecher, C. and Riseberg, L. A., Phys. Rev. B 13, 81 (1976).Google Scholar
15. Tanaka, M. and Kushida, T., Phys. Rev. B 52, 4171 (1995).Google Scholar