Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:06:33.703Z Has data issue: false hasContentIssue false

First-principles Calculations of Phonon and Thermodynamic Properties of Hydrogen Storage α-LaNi5H

Published online by Cambridge University Press:  31 January 2011

Shigeki Saito
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, Tsukuba, Japan
Masahiko Katagiri
Affiliation:
[email protected]@nifty.com, National Institute for Materials Science, Computational Materials Science Center, Tsukuba, Ibaraki, Japan
Vasileios Tserolas
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, Tsukuba, Ibaraki, Japan
Jun Nakamura
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, Tsukuba, Ibaraki, Japan
Hidehiro Onodera
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science Center, Tsukuba, Ibaraki, Japan
Hiroshi Ogawa
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Research Institute for Computational Science, Tsukuba, Japan
Get access

Abstract

The phonon distribution of hydrogen storage α-LaNi5H with 4h, 6m, 12n, and 12o interstitial hydrogen was calculated by using first-principles potential surfaces with a 2×2×2 supercell model in order to investigate structural and thermodynamic properties. Frequency shifts due to the phonon contribution from the internal energies of 12n < 6m < 12o < 4h appeared in specific modes originating from interstitial hydrogen and in the upper-edge modes with nickel-lattice motion. The thermodynamic stability of 12n interstitial hydrogen in α-LaNi5H due to the wide XZ storage space can be explained by its phonon amplitudes and the charge density around nickel-bonded hydrogen.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vucht, J. H. N. van, Kuijpers, F. A. and H. Bruning, C. A. M. Philips Res. Rep. 25 133 (1970).Google Scholar
2. Joubert, J. M. Latroche, M. Cerny, R. Percheron-Guegan, A., and Yvon, K. J. Alloys Compd. 330 208 (2002).Google Scholar
3. Ono, S. Nomura, K. Akiba, E. and Uruno, H. J. Less-Common Met. 113 113 (1985).Google Scholar
4. Shilov, A. L. Kost, M. E. and Kuznetsov, N. T. J. Less-Common Met. 144 23 (1988).Google Scholar
5. Ohlendorf, D. and Flotow, H. E. J. Chem. Phys. 73 2937 (1980).Google Scholar
6. Srivastava, S. and Srivastava, O. N. J. Alloys Compd. 290 250 (1999).Google Scholar
7. Noreus, D. Olsson, L. G. and Werner, P. E. J. Phys. F: Met. Phys. 13 715 (1983).Google Scholar
8. Radwanski, R. J. Kim-Ngan, N. H., Kayzel, F. E. Franse, J. J. M. Gignoux, D. Schmitt, D. and Zhang, F. Y. J. Phys.: Condens. Matter. 4 8853 (1992).Google Scholar
9. Szajek, A. Jurezyk, M. Nowak, M. and Makowiecka, M. Phys. Stat. Solidi (a) 196, 252 (2003).Google Scholar
10. Malik, S. K. Arlinghaus, F. J. and Wallace, W. E. Phys. Rev. B25 6488 (1982).Google Scholar
11. Hector, L. G. Jr. , Herbst, J. F. and Capehart, T. W. J. Alloys Compd. 353 74 (2003).Google Scholar
12. Nakamura, H. Nguyen-Manh, D., and Pettifor, D. G. J. Alloys Compd. 281 81 (1998).Google Scholar
13. Mizuno, M. Araki, H. and Shirai, Y. J. Phys.: Condens. Matter. 20 275232 (2008).Google Scholar
14. Herbst, J. F. and Hector, L. G. Jr. , J. Alloys Compd. 446 188 (2007).Google Scholar
15. Zhao, Y. J. and Freeman, A. J. J. Appl. Phys. 102 033518 (2007).Google Scholar
16. Yu, Y. Han, H. Zhao, Y. Xue, W. and Gao, T. Sol. Stat. Commun. 148 1 (2008).Google Scholar
17. Sluiter, M. Takahashi, M. and Kawazoe, Y. J. Alloys Compd. 248 90 (1997) .Google Scholar
18. Parlinski, K. Li, Z. Q. and Kawazoe, Y. Phys. Rev. Lett. 78 4063 (1997).Google Scholar
19. Saito, S. Inergaev, T. M. Mizuseki, H. Igarashi, N. Note, R. and Kawazoe, Y. Chem. Phys. Lett. 423 441 (2006).Google Scholar
20. Wang, H. Y. Xu, H. Wang, X. C. and Jiang, C. Z. Phys. Lett. A373 2082 (2009).Google Scholar
21. Lee, C. and Gonze, X. Phys. Rev. B51 8610 (1995).Google Scholar
22. Kresse, G. and Joubert, J. Phys. Rev. B59 1758 (1999).Google Scholar
23. Senoh, H. Takeichi, N. Takeshita, H. T. Tanaka, H. Kiyobayashi, T. and Kuriyama, N. Mater. Trans. 44 1663 (2003).Google Scholar
24. Soubeyroux, J. Guegan, A. and Achard, J. J. Less-Comm. Met. 129 181 (1987).Google Scholar