Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T09:13:15.902Z Has data issue: false hasContentIssue false

The First Principles Study on Light Emitting Properties of Semiconducting Metal Silicides

Published online by Cambridge University Press:  15 February 2011

Kenji Yamaguchi
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, Omiya, Saitama 330-8508, Japan
Kazuki Mizushima
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, Omiya, Saitama 330-8508, Japan
Koichi Sassa
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, Omiya, Saitama 330-8508, Japan
Get access

Abstract

Semiconducting metal silicides are potential candidates of silicon-based light emitting materials. In order to carry out screening of the candidates, we calculated the oscillator strength between the valence and excited states near the band gap for various silicides. The electronic states were obtained by the full-potential linear augmented-plane-wave method (FLAPW) based on the local density approximation (LDA). The results show Ru2Si3 and Ca2Si have direct gap at τ point, but the values of the oscillator strength across the gap are evaluated to be zero. Among the indirect gap semiconductors, β-FeSi2, OsSi, and OsSi2 have several peaks and valleys facing each other near the band gap. Among the combinations, we obtained the biggest value of oscillator strength 0.3 at X point for OsSi with the transition energy of 0.42 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vining, C.B., in Proceedings of the 9th International Conference on Thermoelectrics, edited by Vining, C.B. (California Institute of Technology, Pasadena 1991), p. 249.Google Scholar
2. Leong, D., Harry, M., Reeson, K.J., and Homewood, K.P., Nature, 387, 686 (1997).Google Scholar
3. Lange, H., Henrion, W., Selle, B., Reinsperger, G.-U., Oertel, G., and Kinel, H. von, Appl. Surf. Sci. 102, 169 (1996).Google Scholar
4. Tanaka, M., Kumagai, Y., Suemnasu, T., and Hasegawa, F., Jpn. J. Appl. Phys. 36, 3620 (1997).Google Scholar
5. Clark, S.J., Al-Allack, H.M., Brand, S., and Abram, R.A., Phys. Rev. B 58, 10389 (1998).Google Scholar
6. Bost, M.C. and Mahan, J.E., J. Appl. Phys. 63, 839 (1988).Google Scholar
7. Long, R.G., Bost, M.C., and Malian, J.E., Thin Solid Films 162, 29 (1988).Google Scholar
8. Bost, M.C. and Mahan, J.E., J. Vac. Sci. Technol. B 4, 1336 (1986).Google Scholar
9. Lange, H., Henrion, W., Jahne, E., Giehler, M., Giinther, O., and Schumann, J., Mat. Res. Soc. Proc. 320, 479 (1994).Google Scholar
10. Samsonov, G.V., Plenum Press Hand Books of High-Temperature Materials No. 2 – Properties Index, (Plenum, New York, 1964).Google Scholar
11. Schellenberg, L., Braun, H.F., and Muller, J., J. Less-Common Met. 144, 341 (1988).Google Scholar
12. Wolf, W., Bihlmayer, G., and Bliigel, S., Phys. Rev. B 55, 6918 (1997).Google Scholar
13. Filonov, A.B., Migas, D.B., Shaposhnikov, V.L., Dorozhkin, N.N., Borisenko, V.E., and Lange, H., Appl. Phys. Lett. 70, 976 (1997).Google Scholar
14. Dusausoy, P.Y., Protas, J., Wandji, R., and Roques, B., Acta Cryst. B 27, 1209 (1971).Google Scholar
15. Mattheiss, L.F., Phys. Rev. B 43, 12549 (1991).Google Scholar
16. Siegrist, T., Hulliger, F., and Travaglini, G., J. Less-Common Met. 92, 119 (1983).Google Scholar
17. Poutcharovsky, D.J. and Parthe, E., Acta Cryst. B 30, 2692 (1974).Google Scholar
18. Korst, W.L., Finnie, L.N., and Searcy, A.W., J. Phys. Chem. 61, 1541 (1957).Google Scholar
19. Engström, I., Acta Chen. Scandinavica, 24, 2117 (1970).Google Scholar
20. Lebech, B., Bernhard, J., and Freltoft, T., J. Phys.: Condens. Mat. 1, 6105 (1989).Google Scholar
21. Brauer, G. and Haag, H., Zeitschrift fier Anorg. Alleg. Chem. 267, 198 (1952).Google Scholar
22. Engström, I., Lindsten, T., and Zdansky, E., Acta Chem. Scandinavica, Series A., 41 A, 237 (1987).Google Scholar
23. Barlock, J.G. and Mondolfo, L.F., Zeitschrift fuer Met. 66, 605 (1975).Google Scholar
24. Bruzzone, G. and , Franceschi, J. Less-Common Met. 57, 210 (1978).Google Scholar
25. Schäfer, H., Janzen, K.H., and Weiss, A., Angewanmdte Chem. Internat. ed. 2, 393 (1963).Google Scholar
26. Blaha, P., Schwarz, K., and Luitz, J., WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, (Karlhmeinz Schwarz, Techn. Univ. Wien, Vienna 1999); Updated version of P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comp. Phys. Comimun. 59, 399, (1990).Google Scholar
27. Krijn, M.P.C.M. and Eppenga, R., Phys. Rev. B, 44, 9042 (1991).Google Scholar
28. Aymerich, F. and Mula, G., Phys. Stat. Sol. (b), 42, 697 (1970).Google Scholar
29. Eppenga, R., J. Appl. Phys. 68, 3027 (1990).Google Scholar
30. Rompa, H.W.A.M., Eppenga, R., and Schmrnmans, M.F.H., Physica, 145B, 5 (1987).Google Scholar