Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:45:11.109Z Has data issue: false hasContentIssue false

First Principles Study of the Phase Transitions of MnAs

Published online by Cambridge University Press:  01 February 2011

Ivan Rungger
Affiliation:
[email protected], Trinity College Dublin, School of Physics, College Street, Dublin, N/A, 2, Ireland, 0035316088454
Stefano Sanvito
Affiliation:
[email protected], Trinity College, School of Physics, Dublin, N/A, 2, Ireland
Get access

Abstract

The magnetic and structural properties of MnAs are investigated by mapping ab initio total energies onto a Heisenberg Hamiltonian. We study the dependence of the Curie temperature over the unit cell volume and an orthorhombic distortion by using the mean field approximation, and find that for orthorhombically distorted cells the Curie temperature is much smaller than for hexagonal cells. We provide an explanation for the structural changes of both the first order phase transition at 318 K and the second order phase transition at 400 K, with the cell volume driving the stability of the different structures in the paramagnetic state. The stable cell is found to be orthorhombic up to a critical lattice constant of about 3.7 Å, above which it remains hexagonal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bean, C. P. and Rodbell, D. S., Phys. Rev. 126 104 (1962).Google Scholar
2 De Blois, R. W. and Rodbell, D. S., Phys. Rev 130 1347 (1963).Google Scholar
3 Goodenough, J. B. and Kafalas, J. A., Phys. Rev. 157 389 (1967).Google Scholar
4 Menyuk, N., Kafalas, J. A., Dwight, K., and Goodenough, J. B., Phys. Rev. 177 942 (1969).Google Scholar
5 Iikawa, F., Brasil, M. J. S. P., Adriano, C., Couto, O. D. D., Giles, C., Santos, P. V., Daweritz, L., Rungger, I., and Sanvito, S., Phys. Rev. Lett. 95 077203 (2005).Google Scholar
6 Rungger, I. and Sanvito, S., cond-mat/0601574 (2006).Google Scholar
7 Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., J. Phys: Condens. Matter 14 2745 (2002).Google Scholar
8 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77 3865 (1996).Google Scholar
9 Sanvito, S. and Hill, N. A., Phys. Rev. B 62 15553 (2000).Google Scholar
10 Continenza, A., Picozzi, S., Geng, W. T., and Freeman, A. J., Phys. Rev. B 64 085204 (2001).Google Scholar
11 Zhao, Y.J., Geng, W. T., Freeman, A. J., and Delley, B., Phys. Rev. B 65 113202 (2002).Google Scholar
12 Suzuki, T. and Ido, H., J. Phys. Soc. Jpn. 51 3149 (1982).Google Scholar
13 Wilson, R. H. and Kasper, J. S., Acta Crystallogr. 17 95 (1964).Google Scholar
14 Pytlik, L. and Zieba, A., J. Magn. Magn. Mater. 51 199 (1985).Google Scholar
15 Vitebskii, I. M., Kamenev, V. I., and Yablonskii, D. A., Sov. Phys. Solid State 23 121 (1981).Google Scholar