Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:58:25.757Z Has data issue: false hasContentIssue false

First Principles Calculation of Oxygen Ordering in YBa2Cu3O7-y

Published online by Cambridge University Press:  16 February 2011

P. A. Sterne
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
L. T. Wille
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
Get access

Abstract

We have performed a number of first principles electronic structure calculations for YBa 2Cu 3O7_y with different oxygen orderings and concentrations. The resulting total energies have been used to assess the applicability of some of the proposed models for oxygen ordering in this system. We find that the results are consistent with an Ising-like model with asymmetric next-neighbor interactions between oxygen sites. We determine effective interaction parameters from the first principles calculations and use them to compute the phase diagram for the system, which is in excellent agreement with experiment for the tetragonal-orthorhombic I transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyers, R. and Shaw, T.M., Solid State Physics 42, 135 (1989)Google Scholar
2. Aligia, A.A., Rojo, A.G. and Alascio, B.R., Phys. Rev. B 38, 6604 (1988)Google Scholar
3. Khachaturyan, A.G. and Morris, J.W. Jr., Phys. Rev. Lett 59,2776 (1988); 61, 215 (1989); A.G. Khachaturyan, S.V. Semenovskaya and J.W. Morris, Jr., Phys. Rev. B 37, 2243 (1988)Google Scholar
4. Khachaturyan, A.G., Semenovskaya, S.V. and Morris, J.W. Jr., presented at the American Physical Society Meeting, Anaheim, CA, March 1990 Google Scholar
5. de Fontaine, D., Wille, L.T. and Moss, S.C., Phys. Rev. B 36, 5709 (1987); L.T. Wille, A. Berera and D. de Fontaine, Phys. Rev. Lett. 60, 1065 (1988)Google Scholar
6. Wille, L.T. and de Fontaine, D., Phys Rev. B 37, 2227 (1988)Google Scholar
7. Wille, L.T., Phase Transitions (in press)Google Scholar
8. Skriver, H.L., The LMTO Method, (Springer Verlag, Berlin, 1984)Google Scholar
9. Santoro, A. in High Tc Superconductivity, edited by Lynn, J.W., (Springer Verlag, Berlin, 1990)Google Scholar
10. Connolly, J.W.D. and Williams, A.R., Phys. Rev. B 39, 5169 (1983)Google Scholar
11. Kikuchi, R., Phys. Rev. 81, 988, (1951)Google Scholar
12. Kubo, Y., Nakabayashi, Y., Tabuchi, J., Yoshitake, T., Ochi, A., Utsumi, K., Igarashi, H. and Yonezawa, M., Jpn. J. Appl. Phys. 26, L1888 (1987)Google Scholar
13. Specht, E.D., Sparks, C.J., Dhere, A.G., Byrnestad, J., Calvin, O.B., Kroger, D.M. and Oye, H.A., Phys. Rev. B 37, 7426 (1988)Google Scholar
14. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K. and Kleefisch, M.S., Phys. Rev. B 36, 3608, (1987)Google Scholar
15. O'Bryan, H.M. and Gallagher, P.K., Adv. Ceram. Mater. 2, 640 (1987)Google Scholar
16. Meuffels, P., Rupp, B. and Pörschke, E., Physica C, 156, 441 (1988)Google Scholar
17. Fiory, A.T., Gurvitch, M., Cava, R.J. and Espinosa, G.P., Phys. Rev. B 36, 7262 (1987)Google Scholar