Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:02:36.407Z Has data issue: false hasContentIssue false

First Principles Calculation of Cooperative Atom Migration in L12 Ni3Al

Published online by Cambridge University Press:  21 March 2011

H. Schweiger
Affiliation:
Institut für Physikalische Chemie, University of Vienna, Liechtensteinstrasse 22a/I/3, A-1090 Vienna, Austria Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
R. Podloucky
Affiliation:
Institut für Physikalische Chemie, University of Vienna, Liechtensteinstrasse 22a/I/3, A-1090 Vienna, Austria
W. Wolf
Affiliation:
Institut für Physikalische Chemie, University of Vienna, Liechtensteinstrasse 22a/I/3, A-1090 Vienna, Austria
W. Püschl
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
W. Pfeiler
Affiliation:
Institut für Materialphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Get access

Abstract

Recent Monte-Carlo simulations of order relaxations in L12-ordered Ni3Al reproduced the simultaneous action of two processes as experimentally observed by residual resistometry. It was shown that the fast process is related to the fast annihilation/creation of nearest neighbour antisite pairs. These findings are now strongly corroborated by a new supercell approach of ab initio quantum mechanical calculations describing the simultaneous displacement of Ni and Al atoms on their way to their respective antisite positions. Studies of single jumps suggest that such a cooperative migration of Ni and Al is necessary in order to prevent Al antisites from jumping back into their regular position. Relaxation of neighbouring atoms was taken into account. Thus, a minimum migration barrier of about 3 eV was derived which together with the calculated formation enthalpy of a Ni vacancy of 1.5 eV amounts to 4.5 eV, in remarkable agreement with the high activation enthalpy of 4.6 eV as observed experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, J.C., Intermetallics for structural applications; potential, reality and the road ahead, Structural Intermetallics 1997, ed. Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R., and Yamaguchi, M. (The Minerals, Metals, Materials Society, Warrendale, 1993), pp 38.Google Scholar
2. Numakura, H., Ikeda, T., Koiwa, M., and Almazouzi, A., Phil. Mag. A77, 887 (1998).10.1080/01418619808221218Google Scholar
3. Cahn, R.W., Siemers, P.A., Geiger, J.E., and Bardhan, P., Acta metall. 35, 2737 (1987).10.1016/0001-6160(87)90273-2Google Scholar
4. Kozubski, R., Progr. Mater. Sci. 41, 1 (1997).10.1016/S0079-6425(97)00002-9Google Scholar
5. Kozubski, R. and Pfeiler, W., Acta mater. 44, 1573 (1996).Google Scholar
6. Minamino, Y., Yoshida, H., Jung, S.B., Hirao, K., and Yamane, T., Defect Diffusion Forum 143–147, 257 (1997).10.4028/www.scientific.net/DDF.143-147.257Google Scholar
7. Divinski, S.V., Frank, S., Södervall, U., and Herzig, C., Acta mater. 46, 4369 (1998).10.1016/S1359-6454(98)00109-8Google Scholar
8. Dimitrov, C., Zhang, X., and Dimitrov, O., Acta mater. 44, 1691 (1996).Google Scholar
9. Schweiger, H., Moroni, E.G., Wolf, W., Püschl, W., Pfeiler, W., and Podloucky, R., Mat. Res. Soc. Symp. 552, KK5.15.1 (1998).Google Scholar
10. Kresse, G. and Hafner, J., J. Phys. Cond. Matter 6, 8245 (1994).Google Scholar
11. Aoki, K. and Izumi, O., phys. stat. sol. (a) 32, 657 (1975).10.1002/pssa.2210320240Google Scholar
12. Fu, C.-L. and Painter, G.S., Acta Mater. 45, 481 (1997).Google Scholar
13. Oramus, P., Kozubski, R., Cadeville, M.C., Pierron-Bohnes, V., and Pfeiler, W., Solid State Phenomena 72, 209 (2000).Google Scholar